Insulin resistance increases cardiovascular disease

Insulin resistance (IR), resistance of the insulin receptor due to overstimulation, elicits a rise of insulin levels to overcome the reduced receptor sensitivity. The resulting elevated insulin levels damage tissues throughout the body, and are a major contributing cause of cardiovascular disease. This is well known to many practitioners, so it was disturbing to read an article in the New York Times describing endocrinologists who are baffled by the fact that medications for type 2 diabetes that increase insulin levels worsen the risk for cardiovascular disease. The wealth of scientific evidence has been accumulating for a long time.

Insulin resistance and coronary artery disease

Insulin resistance and CADA study published in 1996 in the journal Diabetologia described the strong connection between CAD (coronary artery disease) and insulin resistance with its consequent hyperinsulinemia.

“The purpose of the present study was to quantitate insulin-mediated glucose disposal in normal glucose tolerant patients with angiographically documented coronary artery disease (CAD) and to define the pathways responsible for the insulin resistance.”

Of particular interest is that all the study subjects, both those with CAD and controls, had a normal oral glucose tolerance test. HOWEVER…

Fasting plasma insulin concentration and area under the plasma insulin curve following glucose ingestion were increased in CAD vs control subjects. Insulin-mediated whole body glucose disposal was significantly decreased in CAD subjects and this was entirely due to diminished non-oxidative glucose disposal. The magnitude of insulin resistance was positively correlated with the severity of CAD.”

It is hard to over emphasize the importance to clinicians of being vigilant in recognizing insulin resistance in the presence of normal glucose levels.

“In the CAD subjects basal and insulin-mediated rates of glucose and lipid oxidation were normal and insulin caused a normal suppression of hepatic glucose production. In conclusion, subjects with angiographically documented CAD are characterized by moderate-severe insulin resistance and hyperinsulinaemia and should be included in the metabolic and cardiovascular cluster of disorders that comprise the insulin resistance syndrome or ’syndrome X’.

Hypertension, Dyslipidemia, and Atherosclerotic Cardiovascular Disease

In 1991 a paper published in Diabetes Care described how insulin resistance promotes multiple factors that cause atherosclerosis.

“Diabetes mellitus is commonly associated with systolic/diastolic hypertension, and a wealth of epidemiological data suggest that this association is independent of age and obesity. Much evidence indicates that the link between diabetes and essential hypertension is hyperinsulinemia. Thus, when hypertensive patients, whether obese or of normal body weight, are compared with age- and weight-matched normotensive control subjects, a heightened plasma insulin response to a glucose challenge is consistently found.”

Moreover…

“…insulin resistance…correlates directly with the severity of hypertension. The reasons for the association of insulin resistance and essential hypertension can be sought in at least four general types of mechanisms: Na+ retention, sympathetic nervous system overactivity, disturbed membrane ion transport, and proliferation of vascular smooth muscle cells.”

It is also well-known that IR with its hyperinsulinemia cause elevated lipid levels.

Insulin resistance and hyperinsulinemia are also associated with an atherogenic plasma lipid profile. Elevated plasma insulin concentrations enhance very-low-density lipoprotein (VLDL) synthesis, leading to hypertriglyceridemia. Progressive elimination of lipid and apolipoproteins from the VLDL particle leads to an increased formation of intermediate-density and low-density lipoproteins, both of which are atherogenic.”

And elevated insulin directly fosters atherosclerosis:

“Last, insulin, independent of its effects on blood pressure and plasma lipids, is known to be atherogenic. The hormone enhances cholesterol transport into arteriolar smooth muscle cells and increases endogenous lipid synthesis by these cells. Insulin also stimulates the proliferation of arteriolar smooth muscle cells, augments collagen synthesis in the vascular wall, increases the formation of and decreases the regression of lipid plaques, and stimulates the production of various growth factors. In summary, insulin resistance appears to be a syndrome that is associated with a clustering of metabolic disorders, including non-insulin-dependent diabetes mellitus, obesity, hypertension, lipid abnormalities, and atherosclerotic cardiovascular disease.”

 

Controlling insulin resistance more important than glucose or LDLA more recent study in Diabetes Care presents striking data demonstrating the massive impact reduction in heart attacks that would occur by preventing insulin resistance. In setting out to determine what portion of coronary artery disease is caused by IR, the authors used data from the National Health and Nutrition Examination Survey 1998–2004 to simulate a population representative of young adults in the U.S. They applied the Archimedes model was to estimate the proportion of heart attacks that would be prevented by maintaining insulin resistance at healthy levels. Their data painted a dramatic picture:

“In young adults, preventing insulin resistance would prevent ∼42% of myocardial infarctions. The next most important determinant of CAD is systolic hypertension, prevention of which would reduce myocardial infarctions by ∼36%. Following systolic blood pressure, the most important determinants are HDL cholesterol (31%), BMI (21%), LDL cholesterol (16%), triglycerides (10%), fasting plasma glucose and smoking (both ∼9%), and family history (4%).”

Preventing insulin resistance beat the pants off controlling LDL cholesterol and smoking! Interestingly, they found that the effects were especially important for women:

“The effects of insulin resistance are also affected by sex. Today’s young men face a higher rate of myocardial infarctions than today’s young women: 55 vs. 32%. However, insulin resistance plays a larger relative role in women than in men, with normalization of insulin resistance reducing the myocardial infarction rate ∼57% for women (from 32 to 14%), compared with ∼29% (from 55 to 39%) for men.”

Preventing insulin resistance carries more weight than controlling glucose

In their conclusion the authors make points that are crucial for clinicians to bear in mind:

“Of the risk factors that we believe are sufficiently well studied to permit quantitative analysis, insulin resistance is the most important single risk factor for CAD. Our results indicate that insulin resistance is responsible for approximately 42% of myocardial infarctions. Its effect on CAD is indirect, mediated through its effects on other variables such as SBP, HDL cholesterol, triglycerides, glucose, and apoB.”

Effect of insulin resistance on myocardial infarction

In comparing their results with other research, the authors highlight the critical error made by depending on medications that increase insulin to control glucose:

“Our results are not directly comparable with those of clinical trials, where the effects of glucose lowering on CAD were either much smaller or null. The reason is that in the clinical trials, the focus was on lowering blood glucose—not preventing or curing insulin resistance. The drugs used in the trials either lowered glucose without affecting insulin resistance (e.g., sulfonylureas and insulin) or lowered insulin resistance to some extent but did not eliminate it (e.g., metformin and rosiglitazone). Furthermore, we normalized insulin resistance over the entire lifetimes of the subjects, whereas the treatments in the trials were given only after individuals had developed diabetes and were given only for the limited durations of the studies. Thus, the results of the trials do not represent the full eff

ect of normalizing insulin resistance and are actually consistent with our results.”

Note the implication that cardiovascular damage by IR occurs long before losing glucose control and crossing the border into diabetes territory.

Insulin resistance without diabetes causes cardiovascular disease

Investigators publishing in PLoS One make the same point about cardiovascular damage caused by IR well before diabetes sets in.

“To enable a comparison between cardiovascular disease risks for glucose, insulin and HOMA-IR, we calculated pooled relative risks per increase of one standard deviation…We included 65 studies (involving 516,325 participants) in this meta-analysis. In a random-effect meta-analysis the pooled relative risk of CHD (95% CI; I2) comparing high to low concentrations was 1.52 (1.31, 1.76; 62.4%) for glucose, 1.12 (0.92, 1.37; 41.0%) for insulin and 1.64 (1.35, 2.00; 0%) for HOMA-IR. The pooled relative risk of CHD per one standard deviation increase was 1.21 (1.13, 1.30; 64.9%) for glucose, 1.04 (0.96, 1.12; 43.0%) for insulin and 1.46 (1.26, 1.69; 0.0%) for HOMA-IR.”

They concluded that insulin resistance (HOMA-IR) was the leading culprit:

“The relative risk of cardiovascular disease was higher for an increase of one standard deviation in HOMA-IR compared to an increase of one standard deviation in fasting glucose or fasting insulin concentration.”

The authors also demonstrate that IR is a much better biomarker than fasting insulin:

 “The present meta-analyses showed that fasting glucose, fasting insulin and HOMA-IR were all associated with incident cardiovascular disease in individuals without diabetes. In a standardized meta-analysis we found that coronary heart disease risk increased with 46% for an increase of one standard deviation in HOMA-IR concentration compared to an increase of 21% for fasting glucose concentration and an increase of 4% for fasting insulin concentration.”

Insulin resistance causes fat expansion and vascular endothelial damage

An excellent paper published in Arteriosclerosis, Thrombosis, and Vascular Biology details how IR causes cardiovascular disease beyond abnormal glucose, lipids, hypertension, and its proinflammatory effects.

“…insulin’s action directly on vascular endothelium, atherosclerotic plaque macrophages, and in the heart, kidney, and retina has now been described, and impaired insulin signaling in these locations can alter progression of cardiovascular disease in the metabolic syndrome and affect development of microvascular complications.”

The authors describe how IR causes vascular inflammation and atherosclerosis:

“Insulin action directly on vascular endothelial cells affects endothelial function beyond regulating blood flow or capillary recruitment. Conditional knockout of the insulin receptor in endothelial cells causes a 2- to 3-fold increase in the atherosclerotic lesion size in apolipoprotein E–null mice…the increased atherogenesis in this model can be attributed to insulin action directly on endothelial cells rather than effects mediated through systemic parameters. The accelerated atherosclerosis in mice with endothelial cell insulin receptor knockout is preceded by a dramatic increase in leukocyte rolling and adhesion to endothelium and an increase in expression of vascular cell adhesion molecule-1…insulin signaling independent of NO is responsible for this effect.”

They state that IR promotes the necrotic core at the heart of vulnerable plaque:

Insulin resistance in macrophages, however, promotes formation of a necrotic core in atherosclerotic plaques by enhancing macrophage apoptosis. This is an important event in advanced atherosclerosis because exposure of the necrotic core to circulating blood in the event of plaque rupture can precipitate thrombosis, leading to unstable angina pectoris, transitory cerebral ischemia, stroke, or myocardial infarction.”

Regarding cardiomyocyte function…

“…it is likely that the changes in metabolic substrate inflexibility and increased mitochondrial production of oxidants caused by cardiomyocyte insulin resistance can contribute to development of heart failure in the metabolic syndrome.”

The authors conclude with important clinical points:

“Research on insulin receptor signaling using tissue–specific gene manipulation in mice as well as other methods has provided important insights into insulin action and revealed insulin effects in tissues that a decade or 2 ago were considered nonresponsive to insulin….insulin sensitizers would theoretically have better profiles of action if they improved insulin resistance in tissues regulating glucose and lipid metabolism, as well as in the endothelium and other vascular tissues where impaired insulin signaling is proatherosclerotic independent of metabolic effects. Second, insulin analogues should be carefully evaluated for deleterious effects on insulin signaling pathways which are not affected by insulin resistance, such as those pathways which promote dyslipidemia or increase vascular expression of endothelin-1.”

Insulin resistance promotes advanced plaque progression

A paper published in Cell Metabolism details additional mechanisms by which IR promotes atherosclerosis. The authors note that…

“…the pathophysiological processes involved in the initiation and progression of early lesions are quite different from those that cause the formation of clinically dangerous plaques,…advanced plaque progression is influenced primarily by processes that promote plaque necrosis and thinning of a collagenous “scar” overlying the lesion called the fibrous cap… and distinguishing the effects of insulin resistance and hyperglycemia on these processes is critically important.”

They echo other investigators who point out the crucial fact that insulin resistance does damage before glucose control is lost:

“There is ample clinical evidence that insulin resistance increases the risk for coronary artery disease (CAD) even in the absence of hyperglycemia. Insulin resistance syndromes can promote both atherogenesis and advanced plaque progression, and the mechanisms likely involve both systemic factors that promote these processes, particularly dyslipidemia but also hypertension and a proinflammatory state, as well as the effect of perturbed insulin signaling at the level of the intimal cells that participate in atherosclerosis, including endothelial cells, vascular smooth muscle cells, and macrophages.”

They highlight the critical clinical implication that insulin resistance also entails overstimulation of various tissues by insulin elevated in compensation for receptor resistance or by insulin-elevating medications:

“…“insulin resistance” can mean either defective insulin receptor signaling or, ironically, overstimulation of insulin receptor pathways caused by hyperinsulinemia.”

They also note the difference between ‘ordinary’ atherosclerosis and the lesions, vulnerable plaque, that actually cause heart attacks and ischemic strokes.

“Most importantly, the primary objective of this study was to address an entirely different question, namely, the effect of myeloid IR deficiency on advanced lesional macrophage apoptosis and plaque necrosis. Recall that most atherosclerotic lesions in humans do not cause acute coronary artery disease, because they undergo outward remodeling of the arterial wall, which preserves lumen patency, and do not undergo plaque rupture or erosion and thus do not trigger acute lumenal thrombosis. The small percentage of lesions that do cause acute vascular disease are distinguished by the presence of large areas of necrosis and thin fibrous caps, which promote plaque disruption, acute lumenal thrombosis, and tissue infarction. This concept is particularly important for the topic of this review, because advanced atherosclerotic lesions in diabetic subjects are characterized by large necrotic cores when compared with similarly sized lesions from nondiabetic individuals”

In their conclusion the authors state the role of insulin resistance over hyperglycemia:

“These studies have provided evidence that insulin resistance in macrophages and endothelial cells may play important roles in both atherogenesis and clinically relevant advanced plaque progression. Hyperglycemia, on the other hand, appears to primarily promote early stages of lesion formation…”

Insulin resistance inhibits nitric oxide synthase

An interesting paper published in the Italian journal Panminerva Medica further elucidates key mechanisms, including the damage by IR to nitric oxide regulation done by increasing asymmetric dimethylarginine, which inhibits nitric oxide synthase. The author includes this under the rubric ‘insulin resistance syndrome’.

“…the more insulin resistant an individual, the more insulin they must secrete in order to prevent the development of type 2 diabetes. However, the combination of insulin resistance and compensatory hyperinsulinemia increases the likelihood that an individual will be hypertensive, and have a dyslipidemia characterized by a high plasma triglyceride (TG) and low high-density lipoprotein cholesterol (HDL-C) concentration….Several other clinical syndromes are now known to be associated with insulin resistance and compensatory hyperinsulinemia. For example, polycystic ovary syndrome appears to be secondary to insulin resistance and compensatory hyperinsulinemia. More recently, studies have shown that the prevalence of insulin resistance/hyperinsulinemia is increased in patients with nonalcoholic fatty liver disease, and there are reports that certain forms of cancer are more likely to occur in insulin resistant/hyperinsulinemic persons. Finally, there is substantial evidence of an association between insulin resistance/hyperinsulinemia, and sleep disordered breathing. Given the rapid increase in the number of clinical syndromes and abnormalities associated with insulin resistance/hyperinsulinemia, it seems reasonable to suggest that the cluster of these changes related to the defect in insulin action be subsumed under the term of the insulin resistance syndrome.”

Specifically in regard to cardiovascular disease…

“…in addition to a high TG and a low HDL-C, the atherogenic lipoprotein profile in insulin resistant/hyperinsulinemic individuals also includes the appearance of smaller and denser low density lipoprotein particles, and the enhanced postprandial accumulation of remnant lipoproteins; changes identified as increasing risk of CVD. Elevated plasma concentrations of plasminogen activator inhibitor-1 (PAI-1) have been shown to be associated with increased CVD, and there is evidence of a significant relationship between PAI-1 and fibrinogen levels and both insulin resistance and hyperinsulinemia. Evidence is also accumulating that sympathetic nervous system (SNS) activity is increased in insulin resistant, hyperinsulinemic individuals, and, along with the salt sensitivity associated with insulin resistance/hyperinsulinemia, increases the likelihood that these individuals will develop essential hypertension.”

Moreover…

“The first step in the process of atherogenesis is the binding of mononuclear cells to the endothelium, and mononuclear cells isolated from insulin resistant/hyperinsulinemic individuals adhere with greater avidity. This process is modulated by adhesion molecules produced by endothelial cells, and there is a significant relationship between degree of insulin resistance and the plasma concentration of the several of these adhesion molecules. Further evidence of the relationship between insulin resistance and endothelial dysfunction is the finding that asymmetric dimethylarginine, an endogenous inhibitor of the enzyme nitric oxide synthase, is increased in insulin resistant/hyperinsulinemic individuals. Finally, plasma concentrations of several inflammatory markers are elevated in insulin resistant subjects.”

 

A paper published in Diabetes Metabolism Research and Reviews draws this point further.

“In recent years, it has become clear that insulin resistance and endothelial dysfunction play a central role in the pathogenesis of atherosclerosis. Much evidence supports the presence of insulin resistance as the fundamental pathophysiologic disturbance responsible for the cluster of metabolic and cardiovascular disorders, known collectively as the metabolic syndrome. Endothelial dysfunction is an important component of the metabolic or insulin resistance syndrome and this is demonstrated by inadequate vasodilation and/or paradoxical vasoconstriction in coronary and peripheral arteries in response to stimuli that release nitric oxide (NO). Deficiency of endothelial-derived NO is believed to be the primary defect that links insulin resistance and endothelial dysfunction. NO deficiency results from decreased synthesis and/or release, in combination with exaggerated consumption in tissues by high levels of reactive oxygen (ROS) and nitrogen (RNS) species, which are produced by cellular disturbances in glucose and lipid metabolism.”

And a vicious cycle ensues…

“Endothelial dysfunction contributes to impaired insulin action, by altering the transcapillary passage of insulin to target tissues. Reduced expansion of the capillary network, with attenuation of microcirculatory blood flow to metabolically active tissues, contributes to the impairment of insulin-stimulated glucose and lipid metabolism. This establishes a reverberating negative feedback cycle in which progressive endothelial dysfunction and disturbances in glucose and lipid metabolism develop secondary to the insulin resistance. Vascular damage, which results from lipid deposition and oxidative stress to the vessel wall, triggers an inflammatory reaction, and the release of chemoattractants and cytokines worsens the insulin resistance and endothelial dysfunction.”

In their conclusion the authors state:

“…endothelial dysfunction and insulin resistance commonly occur together and can be detected early in the pathogenesis of atherosclerosis. Insulin resistance can be inferred by the presence of a cluster of metabolic and cardiovascular abnormalities known collectively as the metabolic syndrome or by direct measurement of impaired insulin-stimulated glucose and lipid metabolism . Endothelial dysfunction can be documented by the demonstration of inadequate vasodilation and/or paradoxical vasoconstriction in coronary and peripheral arteries. Lack of endothelial-derived NO may provide the link between insulin resistance and endothelial dysfunction.”

Plea to clinicians

Many resources are available for practitioners to apply a functional medicine model of objectively targeted treatment to resuscitate insulin receptor function and address lifestyle issues, especially diet, for the management of type 2 diabetes that minimizes the use of agents that lower glucose by increasing insulin, and therefore insulin resistance. It is my sincere wish that not only endocrinologists, but all clinicians, recall the mechanisms by which medications that promote insulin resistance increase cardiovascular disease, and act accordingly to protect their patients.

Insulin resistance is a huge topic, and there are numerous posts here pertaining to IR an conditions as diverse as Alzheimer’s disease and breast cancer that can be viewed by using the search box. They include the earlier post on the correlation of IR with blood vessel damage leading to heart attack and stroke.

Subclinical hypothyroidism worsens cardiometabolic profile

Subclinical hypothyroidism and cardiometabolic biomarkersSubclinical hypothyroidism (SCH), poor thyroid effect throughout the body in the presence of ‘normal’ thyroid serum tests, is a widespread yet under-appreciated clinical challenge. A recent study published in the Journal of the Endocrine Society documents adverse cardiometabolic biomarkers in the presence of subclinical hypothyroidism. Additionally, practitioners must bear in mind that more than adequate iodine intake can worsen the condition.

Clarifying the definition of normal thyroid function

The authors note that uncertainty around the definition of normal thyroid function can go beyond contention involving different opinions on laboratory reference ranges by examining the effect of suboptimal thyroid function on the entire organism.

“As thyroid function has multisystemic effects, its derangement could affect a broad range of cardiometabolic pathways potentially related to clinical manifestations. However, the definition of normal thyroid function has been intensely debated, with some experts advocating for lowering the upper limit of normal for thyroid stimulating hormone (TSH) and others for maintaining the current standard. In this regard, thyroid-related risk for incident type 2 diabetes (T2D) and cardiovascular disease (CVD) may impact the definition of TSH normality.”

They note some of the mechanisms by which SCH can adversely affect cardiovascular and metabolic function:

“The potential relationship of thyroid hypofunction with T2D and CVD may be mediated by abnormalities in lipids, lipoprotein subclasses, endothelial function, coagulation, inflammatory pathways, and insulin resistance.”

This hardly exhausts the list of adverse physiological effects since every part of the body, including the brain, requires the stimulus of thyroid hormone to produce energy and function. The public health implications are enormous.

“Detailed assessment of thyroid function effects on these mediators/markers may have high population health implications, especially along the milder hypofunction spectrum within euthyroidism and SCH. Understanding the role of thyroid function in cardiometabolic pathways may guide the clinically relevant definition of thyroid function and unveil potential targets for controlling related morbidity.”

Subclinical hypothyroidism increases cardiometabolic risk

Thus the authors set out to…

“…examine thyroid function across the spectrum of euthyroid to HT in relationship to cardiometabolic pathways represented by lipids, lipoproteins, inflammation, coagulation, glycemic, and insulin resistance biomarkers.”

They examined data for 28,024 apparently healthy middle-aged and older women, and indeed found that cardiometabolic health worsens on a gradient from normal thyroid (euthyroid) function, through subclinical hypothyroidism, to full-blown hypothyroid:

Going from euthyroid to HT, the lipoprotein subclass profiles were indicative of insulin resistance: larger very-low-density lipoprotein size (nm); higher low-density lipoprotein (LDL) particle concentration (nmol/L), and smaller LDL size. There was worsening lipoprotein insulin resistance score from euthyroid to SCH and HT. Of the other biomarkers, SCH and HT were associated with higher high-sensitivity C-reactive protein and hemoglobin A1c. For increasing TSH quintiles, results were overall similar.”

TSH, total and LDL cholesterol not so useful

They note that it was other biomarkers that revealed the actual progressive risk:

“In this population of apparently healthy middle-aged and older women, individuals with SCH and HT had differences in the lipid and lipoprotein subclass profile that indicated worsening insulin resistance and higher cardiometabolic risk compared with euthyroid individuals, despite having similar LDL cholesterol and total cholesterol. Of the other biomarkers, only hs-CRP and HbA1c were associated with SCH and HT. For TSH quintiles mostly within the normal range, lipid and lipoprotein results for TSH quintiles were generally similar but null for other biomarkers. Hence, progressive thyroid hypofunction was associated with insulin-resistant and proatherogenic lipids and lipoproteins profile in a graded manner, with potential clinical consequences.”

Mechanisms

Besides thyroid as a driver of metabolic activity, insulin resistance appears to play a key role. They point out that insulin resistance appears to affect lipoprotein metabolism before glucose metabolism, an observation important for clinicians to bear in mind.

Thyroid hormones act as modulators of cholesterol synthesis and degradation through key enzymes. One of the main mechanisms is the stimulus of thyroid hormones over sterol regulatory element–binding protein 2, which in turn induces LDL receptor gene expression. However, it was shown that the association of HT and higher LDL cholesterol levels is present only in insulin-resistant subjects. Indeed, the lack of LDL cholesterol differences could be explained by our insulin-sensitive study population (low HbA1c levels). HT has also been associated with lower catabolism of lipid-rich lipoproteins by lipoprotein lipase, hepatic lipase, and decreased activity of cholesterol ester transfer proteinthat mediates exchanges of cholesteryl esters of HDL particles with triglyceride-rich LDL and VLDL particles. These mechanisms might explain the relationship of thyroid hypofunction with atherogenic and insulin-resistant lipid and lipoprotein abnormalities. Finally, the milder differences noted in HbA1c compared with LPIR across thyroid categories may be explained by the earlier effects of insulin resistance on lipoprotein metabolism than on glucose metabolism.”

Practitioners should be attentive to the authors’ conclusion:

“In this large population of apparently healthy women, individuals with SCH had differences in their biomarker profile that indicated worsening lipoprotein insulin resistance and higher cardiometabolic risk compared with euthyroid individuals, despite having similar LDL cholesterol and total cholesterol levels. These findings suggest that cardiometabolic risk may increase early in the progression toward SCH and overt HT.

Iodine supplementation reminder

More than adequate iodine increases autoimmune thyroiditisClinicians who may be tempted to reflexively offer iodine supplementation for thyroid disorders including subclinical hypothyroidism should remember the body of evidence showing this can fire up autoimmune thyroiditis. One example by way of a reminder is a study published in the European Journal of Endocrinology showing that more thanequate iodine intake may increase subclinical hypothyroidism and autoimmune thyroiditis. The authors describe their intent:

“With the introduction of iodized salt worldwide, more and more people are exposed to more than adequate iodine intake levels with median urinary iodine excretion (MUI 200–300 μg/l) or excessive iodine intake levels (MUI >300 μg/l). The objective of this study was to explore the associations between more than adequate iodine intake levels and the development of thyroid diseases (e.g. thyroid dysfunction, thyroid autoimmunity, and thyroid structure) in two Chinese populations.”

They examined thyroid hormones, thyroid autoantibodies in serum, iodine levels in urine were measured. and B-mode ultrasonography of the thyroid for 3813 individuals, in two areas with differing levels of iodine exposure. The levels of iodine intake were: Rongxing, MUI 261 μg/l; and Chengshan, MUI 145 μg/l. (MUI =median urinary iodine excretion.) They found a blatant difference in thyroid biomarkers:

“The prevalence of subclinical hypothyroidism was significantly higher for subjects who live in Rongxing than those who live in Chengshan. The prevalence of positive anti-thyroid peroxidase antibody (TPOAb) and positive anti-thyroglobulin antibody (TgAb) was significantly higher for subjects in Rongxing than those in Chengshan. The increase in thyroid antibodies was most pronounced in the high concentrations of TPOAb (TPOAb: ≥500 IU/ml) and low concentrations of TgAb (TgAb: 40–99 IU/ml) in Rongxing.”

Their results suggest there is a discrete window for thyroid intake:

“Compared with the adequate iodine intake level recommended by WHO/UNICEF/ICCIDD MUI (100–200 μg/l), our data indicated that MUI 200–300 μg/l might be related to potentially increased risk of developing subclinical hypothyroidism or autoimmune thyroiditis. This result differs from the WHO’s suggestion that MUI >300 μg/l may increase the risk of developing autoimmune thyroid diseases.”

Practitioners should be cautious with dosing of supplemental iodine in keeping with the authors’ conclusion:

“In conclusion, compared with the population with MUI 145 μg/l in Chengshan, the population with MUI 261 μg/l in Rongxing had a higher risk to develop autoimmune thyroiditis and subclinical hypothyroidism. Thus, more than adequate iodine intake might not be recommended for the general population in terms of keeping a normal function of thyroid.”

Readers may wish to also see the earlier post Hypothyroidism can be provoked by small amounts of supplemental iodine.

Prediabetes, chronic inflammation and hemoglobin A1c

PrediabetesPrediabetes, blood glucose is slightly higher than normal but not enough to qualify for diabetes, is associated with an increased systemic burden of inflammation and elevated risk for cardiovascular, cancer, dementia and other diseases. The first study described in this post, published in the European Journal of Nutrition, highlights the link between prediabetes, chronic inflammation and mortality from a range of diseases tied to HgbA1c (hemoglobin A1c, glycosylated hemoglobin), the key biomarker for glucose regulation. The authors state:

Chronic inflammation is associated with increased risk of cancer, cardiovascular disease (CVD), and diabetes. The role of pro-inflammatory diet in the risk of cancer mortality and CVD mortality in prediabetics is unclear. We examined the relationship between diet-associated inflammation, as measured by dietary inflammatory index (DII) score, and mortality, with special focus on prediabetics.”

Pro-inflammatory diet plus prediabetes (increased HgbA1c)

Of great significance is the effect they reveal when a pro-inflammatory diet, measured by the dietary inflammatory index (DII) score, is consumed when there is elevated HgbA1c. They categorized 13,280 subjects between the ages 20 of and 90 years according to whether or not they were prediabetic, which they defined as a HgbA1c percentage of 5.7–6.4. Their data highlighted this connection between all-cause mortality, a pro-inflammatory diet and prediabetes:

“The prevalence of prediabetes was 20.19 %. After controlling for age, sex, race, HgbA1c, current smoking, physical activity, BMI, and systolic blood pressure, DII scores in tertile III (vs tertile I) was significantly associated with mortality from all causes (HR 1.39, 95 % CI 1.13, 1.72), CVD (HR 1.44, 95 % CI 1.02, 2.04), all cancers (HR 2.02, 95 % CI 1.27, 3.21), and digestive-tract cancer (HR 2.89, 95 % CI 1.08, 7.71). Findings for lung cancer (HR 2.01, 95 % CI 0.93, 4.34) suggested a likely effect.”

The authors conclude:

“A pro-inflammatory diet, as indicated by higher DII scores, is associated with an increased risk of all-cause, CVD, all-cancer, and digestive-tract cancer mortality among prediabetic subjects.”

 Prediabetes and cardiovascular risk

Research published in The BMJ (British Medical Journal) focusses on the substantial impact of prediabetes on the risk of heart attack and ischemic stroke. The authors set out to…

“…evaluate associations between different definitions of prediabetes and the risk of cardiovascular disease and all cause mortality…”

…by analyzing 53 prospective cohort studies with 1,611,339 individuals that passed the screening tests for validity. In this study they applied several definitions of prediabetes:

“Prediabetes was defined as impaired fasting glucose according to the criteria of the American Diabetes Association (IFG-ADA; fasting glucose 5.6-6.9 mmol/L = 101-124 mg/dL), the WHO expert group (IFG-WHO; fasting glucose 6.1-6.9 mmol/L = 110-124 mg/dL), impaired glucose tolerance (2 hour plasma glucose concentration 7.8-11.0 mmol/L = 141-198 mg/dL during an oral glucose tolerance test), or raised haemoglobin A1c (HbA1c) of 39-47 mmol/mol [5.7-6.4%] according to ADA criteria or 42-47 mmol/mol [6.0-6.4%] according to the National Institute for Health and Care Excellence (NICE) guideline.”

Their data show that prediabetes with a ‘mildly’ elevated HgbA1c was clearly associated with increased cardiovascular risk:

“Compared with normoglycaemia, prediabetes (impaired glucose tolerance or impaired fasting glucose according to IFG-ADA or IFG-WHO criteria) was associated with an increased risk of composite cardiovascular disease (relative risk 1.13, 1.26, and 1.30 for IFG-ADA, IFG-WHO, and impaired glucose tolerance, respectively), coronary heart disease (1.10, 1.18, and 1.20, respectively), stroke (1.06, 1.17, and 1.20, respectively), and all cause mortality (1.13, 1.13 and 1.32, respectively). Increases in HBA1c to 39-47 mmol/mol [5.7-6.4%] or 42-47 mmol/mol [6.0-6.4%] were both associated with an increased risk of composite cardiovascular disease (1.21 and 1.25, respectively) and coronary heart disease (1.15 and 1.28, respectively), but not with an increased risk of stroke and all cause mortality.”

Interestingly, risk of stroke does not emerge from these data, suggesting other factors promoting vascular inflammation. The authors conclude:

“…we found that prediabetes defined as impaired fasting glucose or impaired glucose tolerance is associated with an increased risk of composite cardiovascular events, coronary heart disease, stroke, and all cause mortality. There was an increased risk in people with fasting plasma glucose as low as 5.6 mmol/L [100 mg/dL]. Additionally, the risk of composite cardiovascular events and coronary heart disease increased in people with raised HbA1c. These results support the lower cut-off point for impaired fasting glucose according to ADA criteria as well as the incorporation of HbA1c in defining prediabetes.”

HgbA1c and risk of all-cause and cause-specific mortality without diabetes

Similar results were obtained in a study published in Scientific Reports. Here the authors concluded:

“We found evidence of a non-linear association between HbA1c and mortality from all causes, CVD and cancer in this meta-analysis. The dose-response curves were relatively flat for HbA1c less than around 5.7%, and rose steeply thereafter. This fact reveals a clear threshold effect for the association of HbA1clevels with mortality. In addition, from the perspective of mortality benefit and health care burden, it suggests that the most appropriate HbA1c level of initiating intervention is approximately 5.7%…higher HbA1c level is associated with increased mortality from all causes, CVD, and cancer among subjects without known diabetes. However, this association is influenced by those with undiagnosed diabetes or prediabetes .Because of limited studies, the results in relation to cancer mortality should be treated with caution, and more studies are therefore warranted to investigate whether higher HbA1c level is associated with increased cancer mortality.”

 

Magnesium mediates insulin resistance, diabetes risk

Magnesium, insulin resistance and diabetesMagnesium is required for hundreds crucial functions, not least of which are its calming, parasympathetic nervous system supporting and anti-inflammatory effects. Patients in our practice are also informed that a good magnesium level is necessary for insulin receptor function, further evidence for which has just been published in the journal Diabetologia. The results of this study demonstrate a causal role for low magnesium in diabetes and prediabetes, especially through insulin receptor resistance.

Magnesium and diabetes

An association with diabetes has long been observed, but questions have remained regarding whether this is a cause or an effect. For this reason the authors investigated its role in prediabetes.

“Previous studies have found an association between serum magnesium and incident diabetes; however, this association may be due to reverse causation, whereby diabetes may induce urinary magnesium loss. In contrast, in prediabetes (defined as impaired fasting glucose), serum glucose levels are below the threshold for urinary magnesium wasting and, hence, unlikely to influence serum magnesium levels. Thus, to study the directionality of the association between serum magnesium levels and diabetes, we investigated its association with prediabetes. We also investigated whether magnesium-regulating genes influence diabetes risk through serum magnesium levels. Additionally, we quantified the effect of insulin resistance in the association between serum magnesium levels and diabetes risk.”

 Prediabetes and insulin resistance

They examined data from 8555 subjects for an association with prediabetes/diabetes, and further sought to determine if genes influence diabetes risk through serum magnesium levels. They also aimed to determine how much of the effect is mediated through insulin resistance  by HOMA-IR). Their data show a robust role in regulating insulin receptor function and effect on diabetes risk.

A 0.1 mmol/l decrease in serum magnesium level was associated with an increase in diabetes risk (HR 1.18 [95% CI 1.04, 1.33]), confirming findings from previous studies. Of interest, a similar association was found between serum magnesium levels and prediabetes risk (HR 1.12 [95% CI 1.01, 1.25]). Genetic variation…significantly influenced diabetes risk and for CNNM2, FXYD2, SLC41A2 and TRPM6 this risk was completely mediated by serum magnesium levels.”

Condensing these results they state:

“In this large population-based cohort, we found that over a median follow-up of almost 6 years, low serum magnesium levels are associated with an increased risk of prediabetes, with comparable risk estimates to that of diabetes. Furthermore, we found that common genetic variants in magnesium-regulating genes influence diabetes risk and that this risk is mediated through serum magnesium levels.”

In the clinic

Practitioners are aware of two well-known facts: serum magnesium is a poor, insensitive biomarker for sufficiency; and clinical insufficiency is extremely common. (Even RBC membrane levels are not as dependable as the EXA test—see under ‘Useful Links’.) Thus when serum magnesium is suboptimal it should be diligently attended to by the clinician.

The authors conclude:

“…we found that low serum magnesium levels are associated with an increased risk of prediabetes, with similar effect estimates as compared with diabetes. The effect of serum magnesium on prediabetes and diabetes risk is partly mediated through insulin resistance. Furthermore, common genetic variation in magnesium regulating genes TRPM6, CLDN19, SLC41A2, CNNM2 and FXYD2 significantly modify the risk of diabetes through serum magnesium levels. Both findings support a potential causal role of magnesium in the development of diabetes...”

Fasting insulin reliably shows insulin resistance

International Journal of ObesityInsulin resistance requires elevated levels of insulin to promote cellular uptake of glucose from the bloodstream. Higher levels of insulin do harm throughout the brain and body long before blood glucose levels go up (either fasting or during a glucose tolerance test) as the compensatory system fails. How should clinicians detect early stages of insulin resistance that occur before elevations in blood glucose or HgbA1c? Research published in the International Journal of Obesity offers evidence that fasting plasma insulin reliable detects insulin resistance, at least in cases of obesity. The authors state:

Insulin resistance is the major contributor to cardiometabolic complications of obesity. We aimed to (1) establish cutoff points for insulin resistance from euglycemic hyperinsulinemic clamps (EHCs), (2) identify insulin-resistant obese subjects and (3) predict insulin resistance from routinely measured variables.”

Using reference ranges for hepatic and peripheral insulin sensitivity calculated from healthy non-obese men, they examined data for data from both non-obese and obese men who using two-step EHCs using (insulin infusion dose 20 and 60 mUm−2min−1, respectively). Reference ranges for hepatic and peripheral insulin sensitivity were calculated from healthy non-obese men. Based on these reference values, obese men with preserved insulin sensitivity or insulin resistance were identified. They succeeded in showing that the obese subjects with insulin resistance could be discriminated from those with normal insulin sensitivity by the fasting insulin level:

“Cutoff points for insulin-mediated suppression of endogenous glucose production (EGP) and insulin-stimulated glucose disappearance rate (Rd) were 46.5% and 37.3μmolkg1min1, respectively. Most obese men (78%) had EGP suppression within the reference range, whereas only 12% of obese men had Rd within the reference range. Obese men with Rd <37.3μmolkg−1min−1 did not differ from insulin-sensitive obese men in age, body mass index (BMI), body composition, fasting glucose or cholesterol, but did have higher fasting insulin (110±49 vs 63±29pmol) and homeostasis model assessment of insulin resistance (HOMA-IR) (4.5±2.2 vs 2.7±1.4). Insulin-resistant obese men could be identified with good sensitivity (80%) and specificity (75%) from fasting insulin >74pmoll−1.”

Body mass index (BMI), body composition, fasting glucose and cholesterol were not good predictors of insulin resistance but the fasting plasma insulin level was. [I’m surprised that they didn’t include triglycerides levels which are particularly sensitive to insulin levels.] Note: fasting insulin >74pmoll−1 = >10.7 μU/ml.

There are a number of benign and wholesome agents along with lifestyle adjustments that can be employed to ameliorate insulin resistance. This study shows that 10.7 μU/ml can be used as a clinical decision level for more aggressive targeting of IR. Moreover, it stands to reason that this biomarker can be used for slim but ‘metabolically obese’ patients. The authors conclude:

“Most obese men have hepatic insulin sensitivity within the range of non-obese controls, but below-normal peripheral insulin sensitivity, that is, insulin resistance. Fasting insulin (>74pmoll−1 with current insulin immunoassay) may be used for identification of insulin-resistant (or metabolically unhealthy) obese men in research and clinical settings.”

Insulin resistance indicated by neutrophil-lymphocyte ratio

BMC Endocrine DisordersInsulin resistance (IR) is central to type 2 diabetes and a contributing cause to cardiovascular and neurodegenerative disorders, chronic kidney disease (CKD), a number of cancers and more. A study recently published in BMC Endocrine Disorders the ratio between neutrophils and lymphocytes (neutrophil-lymphocyte ratio, NLR) is a valuable and inexpensive predictive marker for insulin resistance. The authors note:

“Insulin resistance (IR) is a reduction in reaction or sensitivity to insulin and is considered to be the common cause of impaired glucose tolerance, diabetes, obesity, dyslipidemia, and hypertensive diseases….several studies have confirmed the relationship between systemic inflammation and insulin resistance, in which an altered immune system plays a decisive role in the pathogenesis of DM. The immune response to various physiological challenges is characterized by increased neutrophil and decreased lymphocyte counts, and NLR is often recognized as an inflammatory marker to assess the severity of the disease.”

Furthermore…

“Scholars have rarely investigated the relationship between IR and NLR. This study aims to evaluate the relationship between IR and NLR, and determine whether or not NLR is a reliable marker for IR.”

Mean neutrophil-lymphocyte ratio (NLR) values of the groups. Group 1 is diabetic w/o IR, Group 2 is diabetic with IR.

Mean neutrophil-lymphocyte ratio (NLR) values of the groups. Group 1 is diabetic w/o IR, Group 2 is diabetic with IR.

So they investigated the neutrophil-lymphocyte ratio in 413 patients with T2DM, 310 of whom had a HOMA-IR value (fasting plasma glucose (mmol/L) multiplied by fasting serum insulin (mIU/L) divided by 22.5) of > 2.0, indicating insulin resistance. They were compared to a control group of 130 healthy subjects and found a strong association:

“The NLR values of the diabetic patients were significantly higher than those of the healthy control, and the NLR values of the patients with a HOMA-IR value of > 2.0 are notably greater than those of the patients with a HOMA-IR value of ≤ 2.0. Pearson correlation analysis showed a significant positive correlation of NLR with HOMA-IR. Logistic regression analysis showed that the risk predictors of IR include NLR, TG and HbA1c. NLR levels correlated positively with IR. The IR odds ratio increased by a factor of 7.231 (95%) for every one unit increase in NLR.”

 Diabetes, cancer and cardiovascular diseases

In relation to their confirmation of NLR as a predictor for insulin resistance the authors observe…

“Many epidemiological studies have determined that DM is associated with chronic inflammation, which may contribute to the acceleration of diabetic microangiopathy and the development of macroangiopathy; IR is a characterized of T2DM, whereas the exact molecular action leading to IR is not yet understood, several studies have associated IR with inflammation, experimental studies have demonstrated a link between chronic inflammation and insulin resistance through mechanisms involving obesity and atherosclerosis. NLR has been recently defined as a novel potential inflammation marker in cancer and cardiovascular diseases. NLR can easily be calculated using the neutrophil-lymphocyte ratio in peripheral blood count. Calculating NLR is simpler and cheaper than measuring other inflammatory cytokines, such as IL-6, IL-1β, and TNF-α.”

Diabetes and chronic inflammation

These findings highlight the relationship between chronic inflammation, insulin resistance and type 2 diabetes.

“he pathological activation of innate immunity leads to inflammation of the islet cells, resulting in a decrease in pancreatic beta-cell mass and impaired insulin secretion. Patients with T2DM are in a state of low-degree chronic inflammation that induces hypersecretion of inflammatory factors, such as CRP, IL-6, TNF-α, and MCP-1, which results in a constantly elevated neutrophilic granulocyte count. One mechanism by which increased levels of neutrophils could mediate IR may be through augmented inflammation. The increase in NLR appears to underlie the elevated levels of pro-inflammation, as evident from the persistent neutrophil activation and enhanced release of neutrophil proteases with T2DM.”

 NLR tracks HgbA1c and triglycerides

Glycation of hemoglobin (HgbA1c) and triglycerides (TG) both go up as insulin resistance progresses along with the neutrophil-lymphocyte ratio.

“A logistic regression analysis of the following risk factors was conducted: NLR, TG and HbA1c. In our study, in conjunction with the rising of the level of HbAlc, the degree of IR increased significantly. HbA1c showed an association with early-phase insulin secretion assessed by insulinogenic index. Heianza et al. reported that elevated HbA1c levels of above 41 mmol/mol (>5.9%) were associated with a substantial reduction in insulin secretion and insulin sensitivity as well as an association with β-cell dysfunction in Japanese individuals without a history of treatment of diabetes. Increased accumulation of TG has been observed in human muscle tissue of obese and type 2 diabetic subjects, and associated with IR, which is in agreement with the present study. IR reduces the inhibition effect of lipolysis in adipose tissue, resulting in the increase of the free fatty acid (FFA) level in plasma.”

NLR is a superior biomarker

Although susceptible to modification by dehydration, elevated PSA or catecholamine release induced by exercise, the NLR is more sensitive than the neutrophil count alone or CRP levels.

“NLR represents a combination of two markers where neutrophils represent the active nonspecific inflammatory mediator initiating the first line of defense, whereas lymphocytes represent the regulatory or protective component of inflammation. NLR is superior to other leukocyte parameters (e.g., neutrophil, lymphocyte, and total leukocyte counts) because of its better stability compared with the other parameters that can be altered by various physiological, pathological, and physical factors. Thus, as a simple clinical indicator of IR, NLR is more sensitive compared with the neutrophilic granulocyte count and CRP levels, which are widely used as markers of IR.”

Clinical bottom line

Practitioners should not fail to make use of this significant, inexpensive biomarker that is under our noses every day. The authors sum it up:

“…in the present study, NLR serves an important function in predicting the risk of IR. IR in diabetic patients is related to chronic inflammation, and NLR may be helpful in assessing the prognoses of these patients…We recommend that the NLR values of diabetic patients be calculated as NLR is a cheap, predictive, and prognostic marker for IR. High NLR values were independently related to IR.”

CKD (chronic kidney disease) expected for 50% over age 30

American Journal of Kidney DiseasesChronic kidney disease (CKD) is rising steeply and projected to affect more than half of those aged 30 to 64 years in the coming twenty years according to a study just published in the American Journal of Kidney Diseases. The authors state:

“Awareness of chronic kidney disease (CKD), defined by kidney damage or reduced glomerular filtration rate, remains low in the United States, and few estimates of its future burden exist…We used the CKD Health Policy Model to simulate the residual lifetime incidence of CKD and project the prevalence of CKD in 2020 and 2030. The simulation sample was based on nationally representative data from the 1999 to 2010 National Health and Nutrition Examination Surveys.”

More than half of people aged 30 to 64 years likely to be affected

The authors’ data showed that…

For US adults aged 30 to 49, 50 to 64, and 65 years or older with no CKD at baseline, the residual lifetime incidences of CKD are 54%, 52%, and 42%, respectively. The prevalence of CKD in adults 30 years or older is projected to increase from 13.2% currently to 14.4% in 2020 and 16.7% in 2030.”

Currently one in seven adults is affected by chronic kidney disease. The public health consequences are enormous. The authors conclude:

“For an individual, lifetime risk of CKD is high, with more than half the US adults aged 30 to 64 years likely to develop CKD. Knowing the lifetime incidence of CKD may raise individuals’ awareness and encourage them to take steps to prevent CKD.”

Prevention: Metabolic syndrome and chronic kidney disease

Current Opinion in Nephrology and HypertensionComponents of metabolic syndrome (MetS) including insulin resistance, hypertension, dyslipidemia and inflammation are particularly rough on the kidneys. A review published in Current Opinion in Nephrology and Hypertension highlights the connection:

“The association of the metabolic syndrome (MetS) with cardiovascular risk, mortality, type 2 diabetes mellitus, stroke, nonfatty liver disease and gout is well known. However, the association of the MetS with chronic kidney disease (CKD) is now emerging…Studies show that patients with MetS have a 2.5-fold higher risk of developing CKD. The risk of microalbuminuria is also increased two-fold in the MetS. Renal dysfunction becomes apparent long before the appearance of hypertension or diabetes in MetS. Compared with healthy controls, patients with MetS have increased microvascular disease-tubular atrophy, interstitial fibrosis, arterial sclerosis and global and segmental sclerosis.”

Clinicians should especially note that metabolic syndrome is contributing to chronic kidney disease well before it evolves into diabetes and the development of hypertension. Regarding potential mechanisms:

“Studies suggest that the renal fibrosis seen in MetS might be caused by a constellation of insulin resistance, hypertension, dyslipidemias and inflammation, and result in a heightened expression of adipocytokines, angiotensin and inflammatory cytokines such as interleukin-6 and tumour necrosis factor-alpha.”

World Journal of NephrologyThe author of a paper published in the World Journal of Nephrology states:

“Despite the ambiguous definition of MetS, it has been clearly associated with chronic kidney disease markers including reduced glomerular filtration rate, proteinuria and/or microalbuminuria, and histopathological markers such as tubular atrophy and interstitial fibrosis. However, the etiological role of MetS in chronic kidney disease (CKD) is less clear. The relationship between MetS and CKD is complex and bidirectional, and so is best understood when CKD is viewed as a common progressive illness along the course of which MetS, another common disease, may intervene and contribute. Possible mechanisms of renal injury include insulin resistance and oxidative stress, increased proinflammatory cytokine production, increased connective tissue growth and profibrotic factor production, increased microvascular injury, and renal ischemia.

PLOS ONEThe authors of a study published in PLOS One on the relation between metabolic syndrome and chronic kidney disease in an adult Korean population came to the conclusion:

“The strength of association between MS [metabolic syndrome] and the development of CKD increase as the number of components increased from 1 to 5. In sub-analysis by men and women, MS and its each components were a significant determinant for CKDMS and its individual components can predict the risk of prevalent CKD for men and women.”

Moreover, they excluded patients with diabetes to more clearly isolate contribution of metabolic syndrome to CKD.

Cardiology Research and PracticeCommenting on the link between metabolic syndrome and chronic kidney disease in the development of cardiovascular disease in a paper published in Cardiology Research and Practice the authors note:

Microalbuminuria has been described as the earliest manifestation of MetS-associated kidney damage and diabetic nephropathy, and it is associated with insulin resistance independent of diabetes. MetS is often accompanied by increased plasma renin activity, angiotensinogen, angiotensin-converting enzyme activity, and angiotensin II (renin-angiotensin-aldosterone system) and with renal sympathetic activity. Hyperinsulinemia, insulin resistance, and increased plasma angiotensin II levels are potent activators of expression of transforming growth factor-β1, a fibrogenic cytokine that contributes to glomerular injury.”

Insulin resistance, of course, spurs chronic inflammation:

“The hallmark of MetS is insulin resistance. Inflammatory mediators, including tumor necrosis factor (TNF)-α, have been shown to mediate insulin resistance. Adipokines, including TNF-α, IL-6, and resistin, are cytokines secreted by adipose tissue, and their plasma concentrations are elevated in patients with MetS, whereas their plasma adiponectin levels are reduced. These findings may contribute to insulin resistance, and insulin resistance promotes chronic inflammation.”

Sugar versus salt in hypertension and chronic kidney disease

Open HeartA striking paper just published in the journal Open Heart (British Cardiovascular Society) identifying sugar as a worse culprit than salt for hypertension and cardiometabolic disease further links metabolic syndrome and chronic kidney disease. The authors note:

“Cardiovascular disease is the leading cause of premature mortality in the developed world, and hypertension is its most important risk factor. Controlling hypertension is a major focus of public health initiatives, and dietary approaches have historically focused on sodium. While the potential benefits of sodium-reduction strategies are debatable, one fact about which there is little debate is that the predominant sources of sodium in the diet are industrially processed foods.”

But processed foods are high in sugar as well as salt, and it may be unwise to aggressively change sodium consumption…

‘Strategies to lower dietary sodium intake focus (implicitly if not explicitly) on reducing consumption of processed foods: the predominant sources of sodium in the diet…Nonetheless, the mean intake of sodium in Western populations is approximately 3.5–4 g/day. Five decades worth of data indicates that sodium intake has not changed from this level across diverse populations and eating habits, despite population-wide sodium-reduction efforts and changes in the food supply.Such stability in intake suggests tight physiologic control, which if indeed the case, could mean that lowering sodium levels in the food supply could have unintended consequences. Because processed foods are the principal source of dietary sodium, if these foods became less salty, there could be a compensatory increase in their consumption to obtain the sodium that physiology demands.

Highly refined carbohydrates, the fuel for metabolic syndrome, worse than salt

This includes fructose:

“Coincidentally, processed foods happen to be major sources of not just sodium but of highly refined carbohydrates: that is, various sugars, and the simple starches that give rise to them through digestion. Compelling evidence from basic science, population studies, and clinical trials implicates sugars, and particularly the monosaccharide fructose, as playing a major role in the development of hypertension. Moreover, evidence suggests that sugars in general, and fructose in particular, may contribute to overall cardiovascular risk through a variety of mechanisms. Lowering sodium levels in processed foods could lead to an increased consumption of starches and sugars and thereby increase in hypertension and overall cardiometabolic disease.”

Hypertensive mechanisms of fructose. NO, nitric oxide; RAS, renin-angiotensin system; RNS, reactive nitrogen species; ROS, reactive oxygen species.

Hypertensive mechanisms of fructose. NO, nitric oxide; RAS, renin-angiotensin system; RNS, reactive nitrogen species; ROS, reactive oxygen species.

 “Although high intakes of either fructose alone or sucrose may lead to insulin resistance, it is fructose that has been implicated as the sugar responsible for reducing sensitivity of adipose tissue to insulin.Insulin stimulates the SNS and hyperinsulinaemia may lead to hypertension, with the degree of insulin resistance in peripheral tissues directly correlated with hypertension severity. Reducing insulin resistance may lead to a reduction in blood pressure, and hyperinsulinaemia seems more related to fructose than glucose.”

The authors make a distinction between fructose added to foods and that found naturally in whole fruit as stated in their conclusion:

“While naturally occurring sugars in the form of whole foods like fruit are of no concern, epidemiological and experimental evidence suggest that added sugars (particularly those engineered to be high in fructose) are a problem and should be targeted more explicitly in dietary guidelines to support cardiometabolic and general health…Evidence from epidemiological studies and experimental trials in animals and humans suggests that added sugars, particularly fructose, may increase blood pressure and blood pressure variability, increase heart rate and myocardial oxygen demand, and contribute to inflammation, insulin resistance and broader metabolic dysfunction. Thus, while there is no argument that recommendations to reduce consumption of processed foods are highly appropriate and advisable, the arguments in this review are that the benefits of such recommendations might have less to do with sodium—minimally related to blood pressure and perhaps even inversely related to cardiovascular risk—and more to do with highly-refined carbohydrates. It is time for guideline committees to shift focus away from salt and focus greater attention to the likely more-consequential food additive: sugar.”

Quoted in Medscape Medical News, Richard Krasuski, MD, from the Cleveland Clinic in Ohio commented on the study:

“”It is a little bit frightening that we have been focusing on salt for so long.”…The conclusion that sugar represents a greater danger to the heart than salt, Dr Krasuski said, was an “eye opener.” He acknowledged, though, that he should have anticipated it. He and other cardiologists have noticed that the recommendations to increasingly lower salt intake have not resulted in the expected positive cardiovascular outcomes.”

Bottom line for chronic kidney disease

CKD incidence is rising steeply and projected to affect half the population aged 30 to 64. Key causal factors are metabolic syndrome with insulin resistance and hypertension. These are made worse by added sugars than by salt. Appropriate diet, objective determination of individual genetic and circumstantial needs for supplementation, regular exercise, not smoking, stress management and addressing sleep disordered breathing are common sense preventive and remedial measures.

Nuts reduce inflammation and all-cause mortality

Asia Pacific Journal of Clinical NutritionNuts have been shown to confer multiple health benefits, so it’s disconcerting to see  some apparently popular paleo diet plans that forbid them. In the absence of a nut allergy it’s a shame to forgo the benefit of such a healthful and convenient food. The intent of the paleo diet is to reduce inflammation, so it’s worth considering a paper published in the Asia Pacific Journal of Clinical Nutrition offering evidence that nuts reduce inflammation. The authors note:

“Several large epidemiological studies have associated the frequency of nut consumption with reduced risk of coronary heart disease (CHD), CVD, myocardial infarction, sudden death, and all causes of mortality, Type 2 diabetes (T2D) and other chronic disease.

Nuts are anti-inflammatory

Key inflammatory markers including CRP and IL-6 are reduced by nut consumption:

“Epidemiological and clinical studies suggest that some dietary factors, such as n–3 polyunsaturated fatty acids, antioxidant vitamins, dietary fiber, L-arginine and magnesium may play an important role in modulating inflammation. The relationship observed between frequent nut consumption and the reduced risk of cardiovascular mortality and type 2 diabetes in some prospective studies could be explained by the fact that nuts are rich in all of these modulator nutrients. In fact, frequent nut consumption has been associated with lower concentrations of some peripheral inflammation markers in cross-sectional studies. Nut consumption has also been shown to decrease the plasma concentration of CRP, IL-6 and some endothelial markers in recent clinical trials.”

Nuts also benefit cholesterol and lipids

“In the last two decades, a considerable number of clinical trials have consistently demonstrated beneficial effects on blood lipids and lipoproteins, primarily a decrease in Low-density lipoprotein (LDL) cholesterol, a classical CHD risk factor. This effect has been demonstrated consistently in different population groups, using different types of nuts (walnuts, hazelnuts, almonds, pecan, pistachio and macadamia nuts) and study designs. The favourable effects of tree nuts or tree nut oils on plasma lipid and lipoprotein profiles is a mechanism that appears to account for some of the cardio protective effects observed in the epidemiological studies.”

Nuts and olive oil are a great combination for cardiovascular risk:

“…in a cross-sectional study we evaluated the association between components of the Mediterranean diet and circulating markers of inflammation in a large cohort of asymptomatic subjects with high risk of cardiovascular disease. Subjects with the highest consumption of nuts and virgin olive oil showed the lowest concentrations of VCAM-1, ICAM-1, IL-6 and CRP; although this difference was statistically significant for ICAM-1 only in the case of nuts and for VCAM-1 in the case of olive oil.”

After reviewing several other studies documenting improvements in inflammation and endothelial function the authors conclude:

“In conclusion, nuts are complex food matrices containing diverse nutrients and other chemical constituents that may favourably influence human physiology. These sub- stances may inhibit the activation of the innate immune system, probably by decreasing the production of proinflammatory cytokines such as CRP, IL-6, TNF-α or IL-18, and increase the production of antiinflammatory cytokines such as adiponectin. This may improve the proinflammatory milieu, which in turn ameliorates endothelial dysfunction at the vascular level, and ultimately decreases the risk of insulin resistance, type 2 diabetes and coronary heart disease. The capacity of nuts to modulate inflammation may explain at least in part why frequent nut consumption is associated with reduced risk of diabetes and cardiovascular disease in epidemiological studies.”

Nut consumption reduces total and cause-specific mortality

New England Journal of MedicineA paper published earlier this year in The New England Journal of Medicine add more extensive data presenting evidence that eating nuts reduces death from cancer, heart disease, respiratory disease and ‘all causes’.

“Observational and intervention studies of nut consumption have also shown reductions in various mediators of chronic diseases, including oxidative stress, inflammation, visceral adiposity, hyperglycemia, insulin resistance, and endothelial dysfunction. In prospective cohort studies, increased nut intake has been associated with reduced risks of type 2 diabetes mellitus, the metabolic syndrome, colon cancer, hypertension, gallstone disease, diverticulitis, and death from inflammatory diseases.”

To extend the data to encompass the effects of eating nuts and all causes of death the authors:

“…examined the association of nut consumption with total and cause-specific mortality in two large, independent cohort studies of nurses and other health professionals. These studies provide repeated measures of diet (including separate data on peanuts and tree nuts), extensive data on known or suspected confounding variables, 30 years of follow-up, and data on more than 27,000 deaths for analysis.”

Their data suggest that nuts are among the healthiest foods to eat:

“In two large prospective U.S. cohorts, we found a significant, dose-dependent inverse association between nut consumption and total mortality, after adjusting for potential confounders. As compared with participants who did not eat nuts, those who consumed nuts seven or more times per week had a 20% lower death rate. Inverse associations were observed for most major causes of death, including heart disease, cancer, and respiratory diseases. Results were similar for peanuts and tree nuts, and the inverse association persisted across all subgroups.”

Some nuts every day was the best:

“Our results are consistent with the findings in previous, smaller studies. The Adventist Health Study showed that, as compared with nut consumption less than once per week, consumption five or more times per week was associated with reduced total mortality among whites, blacks, and elderly persons, with hazard ratios ranging from 0.56 to 0.82. Similarly, a study of a U.K. cohort, the Iowa Women’s Health Study, the Netherlands Cohort Study, and an earlier analysis of the NHS all showed significant inverse associations between nut intake and total mortality. Finally, in a recent secondary analysis within the PREDIMED (Prevención con Dieta Mediterránea) trial, a hazard ratio for death of 0.61 (95% CI, 0.45 to 0.83) was found for consumption of more than three servings of nuts per week, as compared with no nut consumption.”

Bottom line: ‘paleo’ and ‘autoimmune’ paleo diets can be fine healing diets for many, but like everything else should not be applied dogmatically or in a ‘rubber stamp’, ‘one-size-fits-all’ manner. In the absence of allergy, the evidence supports the consumption of nuts as wholesome foods with anti-inflammatory and metabolic benefits, exactly what paleo diets intend to accomplish.

Prediabetes increases cancer risk

DiabetologiaPrediabetes, elevated levels of blood sugar that are still ‘within’ the normal range, increases cancer risk among its mob of other afflictions as further validated by a meta-analysis just published in Diabetologia. The authors state:

Prediabetes is a general term that refers to an intermediate stage between normoglycaemia and overt diabetes mellitus. It includes individuals with impaired glucose tolerance (IGT), impaired fasting glucose (IFG) or a combination of the two. In 2003, the ADA redefined the range of fasting plasma glucose (FPG) concentration for diagnosing IFG from 6.1– 6.9 mmol/l to 5.6–6.9 mmol/l [101-124 mg/dL] in order to better identify individuals at risk of developing diabetes.”

Because this lower range has been disputed with inconsistencies in previous studies, the authors set out to…

“…to evaluate the putative association between different definitions of prediabetes and risk of cancer.”

Their data adds yet more weight to the vital clinical importance of regulating blood sugar and insulin:

“In this meta-analysis of 16 prospective cohort studies comprising more than 890,000 individuals, we found that the presence of prediabetes at baseline was significantly associated with increased risks of cancer in the general population, particularly for liver cancer and stomach or colorectal cancer. The risks were increased when a lower FPG value of 5.6– 6.9 mmol/l [101-124 mg/dL] was used, according to the current ADA definition of IFG, as well as in participants with IGT. The results were consistent across cancer endpoints, age, study characteristics, follow-up duration and ethnicity.”

Much has been written here about the importance of glucose and insulin regulation for a wide range of conditions. The authors echo these themes in comments about likely mechanisms:

Hyperglycemia, advanced glycation end-products and oxidative damage

“First, chronic hyperglycaemia and its related conditions, such as chronic oxidative stress and the accumulation of advanced glycation end-products, may act as carcinogenic factors. It has been reported that diabetes is associated with an increased production of reactive oxygen species and greater oxidative damage to DNA. Recently, it has also been reported that the overall frequency of DNA damage and cytotoxicity correlates with the level of HbA1c in people with prediabetes.”

Insulin resistance

“Second, insulin resistance is a core defect responsible for the development of diabetes, and is established in individuals with prediabetes. The compensatory hyperinsulinaemia and increased level of bioavailable IGF 1 related to insulin resistance may promote the proliferation of cancer cells and may also relate to worsened cancer outcomes.”

Genetics

Third, genetic ‘interferences’ may also play an important role in the development of cancer in prediabetic individuals. A recent study has suggested that nuclear receptor coactivator 5 is a haploinsufficient tumour suppressor, and that a deficiency of nuclear receptor coactivator 5 increases susceptibility to both glucose intolerance and hepatocellular carcinoma, partially by increasing IL-6 expression.”

The public health implications of their results are enormous:

“These findings have important clinical and public health implications. In the US population aged ≥18 years, the age- adjusted prevalence of prediabetes increased from 29.2% in 1999–2002 to 36.2% in 2007–2010. Considering the high prevalence of prediabetes, as well as the robust and significant association between prediabetes and cancer dem- onstrated in our study, successful intervention in this large population could have a major public health impact. The ADA suggest that lifestyle intervention is the mainstay of treatment for prediabetes in the general population, and metformin is recommended for delaying progression to overt diabetes if individuals present with other related risk factors, such as a BMI ≥35 kg/m2, dyslipidaemia, hypertension, a family history of diabetes or an HbA1c >6% (42 mmol/mol)]. It should be noted that metformin is now considered as having some ‘protective’ anticancer properties. Notably, metformin mediates an approximately 30% reduction in the lifetime risk of cancer in diabetic patients. However, whether this is true in prediabetic individuals is not yet known. Long-term, large- scale studies of high-risk individuals, especially those with IGT or a combination of IGT and IFG, are urgently needed…”

Of course, functional practitioners have a number of resources besides metformin to help recover insulin sensitivity and restore healthier blood glucose regulation. The authors conclude:

“Overall, prediabetes was associated with an increased risk of cancer, especially liver, endometrial and stomach/colorectal cancer.’

Inflammation and diabetes

Diabetes Research and Clinical PracticeConsidering that chronic inflammation is a key common denominator in diabetes, prediabetes (metabolic syndrome) and cancer, it’s edifying to reflect on a paper published recently in Diabetes Research and Clinical Practice:

“It is recognized that a chronic low-grade inflammation and an activation of the immune system are involved in the pathogenesis of obesity-related insulin resistance and type 2 diabetes. Systemic inflammatory markers are risk factors for the development of type 2 diabetes and its macrovascular complications. Adipose tissue, liver, muscle and pancreas are themselves sites of inflammation in presence of obesity. An infiltration of macrophages and other immune cells is observed in these tissues associated with a cell population shift from an anti-inflammatory to a pro-inflammatory profile. These cells are crucial for the production of pro-inflammatory cytokines, which act in an autocrine and paracrine manner to interfere with insulin signaling in peripheral tissues or induce β-cell dysfunction and subsequent insulin deficiency. Particularly, the pro-inflammatory interleukin-1β is implicated in the pathogenesis of type 2 diabetes through the activation of the NLRP3 inflammasome. The objectives of this review are to expose recent data supporting the role of the immune system in the pathogenesis of insulin resistance and type 2 diabetes and to examine various mechanisms underlying this relationship. If type 2 diabetes is an inflammatory disease, anti-inflammatory therapies could have a place in prevention and treatment of type 2 diabetes.”

Nigella sativa, a true ‘wonder medicine’?

Nigella sativa flower and seedsNigella sativa, also known as black cumin, produces seeds with a mind-boggling wealth of medicinal virtues. For colleagues and others who may not be familiar with the abundance of scientific evidence for the use of Nigella sativa seed extract in clinical practice, this selection of citations serves as an introduction to its wide range of indications.

An illustrious history

Asian Pacific Journal of Tropical MedicineTraditional uses of Nigella sativa are surveyed in a paper published in the Asian Pacific Journal of Tropical Medicine:

Nigella sativa (N. sativa) (Family Ranunculaceae) is a widely used medicinal plant throughout the world. It is very popular in various traditional systems of medicine like Unani and Tibb, Ayurveda and Siddha. Seeds and oil have a long history of folklore usage in various systems of medicines and food. The seeds of N. sativa have been widely used in the treatment of different diseases and ailments. In Islamic literature, it is considered as one of the greatest forms of healing medicine. It has been recommended for using on regular basis in Tibb-e-Nabwi (Prophetic Medicine). It has been widely used as antihypertensive, liver tonics, diuretics, digestive, anti-diarrheal, appetite stimulant, analgesics, anti-bacterial and in skin disorders. Extensive studies on N. sativa have been carried out by various researchers and a wide spectrum of its pharmacological actions have been explored which may include antidiabetic, anticancer, immunomodulator, analgesic, antimicrobial, anti-inflammatory, spasmolytic, bronchodilator, hepato-protective, renal protective, gastro-protective, antioxidant properties, etc. Due to its miraculous power of healing, N. sativa has got the place among the top ranked evidence based herbal medicines. This is also revealed that most of the therapeutic properties of this plant are due to the presence of thymoquinone which is major bioactive component of the essential oil. The present review is an effort to provide a detailed survey of the literature on scientific researches of pharmacognostical characteristics, chemical composition and pharmacological activities of the seeds of this plant.”

Critical Reviews in Food Science and NutritionA paper published in the journal Critical Reviews in Food Science and Nutrition also suggests Nigella sativa’s wide scope of use:

“…It possesses a nutritional dense profile as its fixed oil (lipid fraction), is rich in unsaturated fatty acids while essential oil contains thymoquinone and carvacrol as antioxidants. N. sativa seeds also contain proteins, alkaloids (nigellicines and nigelledine), and saponins (α-hederin) in substantial amounts. Recent pharmacological investigations suggested its potential role, especially for the amelioration of oxidative stress through free radical scavenging activity, the induction of apoptosis to cure various cancer lines, the reduction of blood glucose, and the prevention of complications from diabetes. It regulates hematological and serological aspects and can be effective in dyslipidemia and respiratory disorders. Moreover, its immunopotentiating and immunomodulating role brings balance in the immune system. Evidence is available supporting the utilization of Nigella sativa and its bioactive components in a daily diet for health improvement. This review is intended to focus on the composition of Nigella sativa and to elaborate its possible therapeutic roles as a functional food to prevent an array of maladies.”

Anti-inflammatory activity

Molecular Biology ReportsChronic inflammation is a hallmark of most chronic degenerative diseases. A study published in Molecular Biology Reports demonstrates that Nigella sativa reduces inflammation triggered by LPS (lipopolysaccharide), of particular relevance for autoimmunity.

“Inflammation has an important role in many diseases such as cystic fibrosis, allergies and cancer. The free radicals produced during inflammation, can induce gene mutations and posttranslational modifications of cancer related proteins. Nigella sativa L. (N. sativa) is herbaceous plant and commonly used as a natural food. It has many pharmacological effects including antibacterial, antifungal, antitumor, analgesic, antipyretic activity. The aim of this study was to investigate the anti-inflammatuar and anti-oxidant activity of N. sativa in acute inflammation. Thus we used the experimental lipopolysaccharides (LPS)-induced model. Intraperitoneal LPS 1 mg/kg was administered to groups. N. sativa (500 mg/kg) and essential oil (5 ml/kg) were given orally to treatment groups, after 24-h of intraperitoneal LPS-injection. To determine the lung inflammation, 18F-fluoro-deoxy-d-glucose (0.8 ml/kg) was administrated under the anesthesia before the 1 h of PET-scanning. After the FDG-PET, samples were collected. Lung and liver18F-FDG-uptake was calculated. Serum AST, ALT, LDH and hcCRP levels were determined and liver, lung and erythrocyte SOD, MDA and CAT levels were measured. Liver and lung NO and DNA fragmentation levels were determined. MDA levels were decreased in treated inflammation groups whereas increased in untreated inflammation group. SOD and CAT activities in untreated inflammation group were significantly lower. According to the control group, increased AST and ALT levels were found in untreated inflammation group. 18F-FDG uptake of inflammation groups were increased when compare the control group… We conclude that, in LPS-induced inflammation, N. sativa have therapeutic and anti-oxidant effects.”

Immunomodulatory effects of Nigella sativa

Chinese Journal of Integrative MedicineA fascinating study in the Chinese Journal of Integrative Medicine offers evidence that Nigella sativa, beyond having simply an anti-inflammatory effect, is an immunomodulator that may help to restore healthier immune regulation:

“Cells isolated from human PBMCs which were treated with methanolic extract of NS for 48 h into two separate environments (PHA and non-PHA stimulated). Flow cytometry (for T helper/inducer cells and natural killer cells) and real time-polymerase chain reaction (PCR) assays for a few selected proinflammatory gene expressions were performed. Extracts from NS had an immunostimulating effect on non-PHA-stimulated proliferation of human PBMCs. In contrast, immunosuppressive activity was observed on PHA-stimulated proliferation of human PBMCs.”

Antimicrobial activity

BioMed Research InternationalNigella sativa has also shown good effect in the treatment of infections. A study recently published in Biomed Research International validates its antibacterial and antifungal properties:

“…major components in black cumin essential oils which were thymoquinone (37.6%) followed by p-cymene (31.2%), α-thujene (5.6%), thymohydroquinone (3.4%), and longifolene (2.0%), whereas the oleoresins extracted in different solvents contain linoleic acid as a major component….The essential oil showed up to 90% zone inhibition against Fusarium moniliforme in inverted petri plate method. Using agar well diffusion method for evaluating antibacterial activity, the essential oil was found to be highly effective against Gram-positive bacteria.”

The authors summarize their findings by concluding:

“The results obtained in antimicrobial investigations of black cumin oil and oleoresins were in good agreement with the previous reported work…Seeds of black cumin seem to possess magical properties and have been worked out extensively. This study revealed that black cumin essential oil and its oleoresins constitute a good alternative source of essential fatty acids compared with common vegetable oil. The present results showed that essential oil and oleoresins of black cumin exhibited higher antioxidant activity than synthetic antioxidants. These findings could be used to prepare multipurpose products for pharmaceutical applications and its usage as dietary source of antioxidant should be considered largely for alleviating and ameliorating diseases.”

World Journal of GastroenterologyPotent antiviral effects of Nigella sativa are in evidence in a study published in the World Journal of Gastroenterology on hepatitis C:

“Thirty patients with hepatitis C virus (HCV) infection, who were not eligible for IFN/ribavirin therapy, were included in the present study…Various parameters, including clinical parameters, complete blood count, liver function, renal function, plasma glucose, total antioxidant capacity (TAC), and polymerase chain reaction, were all assessed at baseline and at the end of the study. Clinical assessment included: hepato and/or splenomegaly, jaundice, palmar erythema, flapping tremors, spider naevi, lower-limb edema, and ascites. N. sativa was administered for three successive months at a dose of (450 mg three times daily). Clinical response and incidence of adverse drug reactions were assessed initially, periodically, and at the end of the study.”

The improvements noted were outstanding:

“N. sativa administration significantly improved HCV viral load. After N. sativa administration, the following laboratory parameters improved: total protein, albumin, red blood cell count, and platelet count. Fasting blood glucose and postprandial blood glucose were significantly decreased in both diabetic and non-diabetic HCV patients. Patients with lower-limb edema decreased significantly from baseline compared with after treatment. Adverse drug reactions were unremarkable except for a few cases of epigastric pain and hypoglycemia that did not affect patient compliance.”

Clinicians involved in case management of HCV should note their conclusion:

N. sativa administration in patients with HCV was tolerable, safe, decreased viral load, and improved oxidative stress, clinical condition and glycemic control in diabetic patients.”

 Amelioration of metabolic disorders

Plant Foods for Human NutritionNigella sativa possesses remarkable properties that improve metabolic disorders ranging including insulin resistance and diabetes, obesity, and liver fibrosis. From a paper in Plant Foods for Human Nutrition:

“Obesity is closely associated with increased incidence of cardiovascular diseases, cancer, insulin resistance, and immune dysfunction, and thus obesity-mitigation strategies should take into account these secondary pathologies in addition to promoting weight loss. Recent studies indicate that black cumin (Nigella sativa) has cardio-protective, anti-cancer, anti-diabetic, antioxidant, and immune-modulatory properties.”

 Diabetes

Evidence-Based Complementary and Alternative MedicineEvidence for its benefit in diabetes is offered in a study published in Evidence-Based Complementary and Alternative Medicine:

“The main objective of this instant study was to explore the antidiabetic potential of Nigella sativa fixed oil (NSFO) and essential oil (NSEO). Three experimental groups of rats received diets during the entire study duration, that is, D1 (control), D2 (NSFO: 4.0%), and D3 (NSEO: 0.30%). Experimental diets (NSFO & NSEO) modulated the lipid profile, while decreasing the antioxidant damage. However, production of free radicals, that is, MDA, and conjugated dienes increased by 59.00 and 33.63%, respectively, in control. On the contrary, NSFO and NSEO reduced the MDA levels by 11.54 and 26.86% and the conjugated dienes levels by 32.53 and 38.39%, respectively. N. sativa oils improved the health and showed some promising anti-diabetic results.”

BMC Complementary & Alternative MedicineAnother study on Nigella sativa and diabetes was recently published in BMC Complementary and Alternative Medicine.

Nigella sativa fixed (NSFO) and essential (NSEO) oils have been used to treat diabetes mellitus and its complications. Present study was undertaken to explore and validate these folkloric uses…Sprague dawley rats having streptozotocin (STZ) induced diabetes mellitus were used to assess the role of NSFO and NSEO in the management of diabetes complications.”

Of note is its ability to increase levels of glutathione:

“The results indicated that STZ decreased the glutathione contents (25.72%), while NSFO and NSEO increased the trait significantly. Experimental diets increased the tocopherol contents and enhanced the expression of hepatic enzymes. Correlation matrix further indicated that antioxidant potential is positively associated responsible for the modulation of hepatic enzymes and the decrease of the nitric oxide production thus controlling the diabetes complications.”

Nigella sativa lowers cholesterol

Advanced Pharmaceutical BulletinCholesterol along with blood glucose was lowered in a study on Nigella sative for metabolic syndrome in menopausal women published in the Advanced Pharmaceutical Bulletin:

“Thirty subjects who were menopausal women within the age limit of 45-60 were participated in this study and randomly allotted into two experimental groups. The treatment group was orally administered with N. sativa seeds powder in the form of capsules at a dose of 1g per day after breakfast for period of two months and compared to control group given placebo…significant improvement was observed in total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), and blood glucose…These results suggested that treatment with N. sativa exert a protective effect by improving lipid profile and blood glucose which are in higher risk to be elevated during menopausal period.”

Journal of Translational MedicineImprovements in hypercholesterolemia in menopause were also documented in a study recently published in the Journal of Translational Medicine:

“In this study, Nigella sativa was evaluated for its hypolipidemic effects among menopausal women. In a randomised trial, hyperlipidemic menopausal women were assigned to treatment (n = 19) or placebo groups (n = 18), and given N. sativa or placebo for two months after their informed consents were sought. At baseline, blood samples were taken and at one month intervals thereafter until one month after the end of the study…The results showed that N. sativa significantly improved lipid profiles of menopausal women (decreased total cholesterol, low density lipoprotein cholesterol and triglyceride, and increased high density lipoprotein cholesterol) more than the placebo treatment over 2 months of intervention.”

These benefits persisted for a month after treatment with Nigella sativa was discontinued:

One month after cessation of treatment, the lipid profiles in the N. sativa-treated group tended to change towards the pretreatment levels.”

The authors conclude:

“N. sativa is thought to have multiple mechanisms of action and is cost-effective. Therefore, it could be used by menopausal women to remedy hypercholesterolemia, with likely more benefits than with single pharmacological agents that may cause side effects. The use of N. sativa as an alternative therapy for hypercholesterolemia could have profound impact on the management of CVD among menopausal women especially in countries where it is readily available.”

International Journal of Preventive MedicineAnd a study in the International Journal of Preventive Medicine documented improvements in lipid metabolism and oxygen utilization:

“In this randomized, double-blind, controlled trial…20 sedentary overweight females were divided into two groups and assigned to N. sativa supplementation (N. sativa capsules) or a placebo for the 8 weeks, both groups participated in an aerobic training program (3 times/week)…. Blood lipids and VO2 max were determined at baseline and at the end of 8 weeks…N. sativa supplementation lowered total cholesterol (TC), triglyceride, low-density lipoprotein (LDL) and body mass index and increased high density lipoprotein (HDL) and VO2 max.”

It’s worth noting that the diet of the study subjects remained the same:

Since we asked all subjects not to change their usual daily diet, it seems that this changes may be due to the result of consuming black seeds and regular aerobic training.”

Interestingly in regard to lowering cholesterol:

“The hypotriglyceridemic effect of N. sativa is possibly due to its choleretic activity. The choleretic function of N. sativa is either by reducing the synthesis of cholesterol by hepatocytes or by decreasing its fractional reabsorption from the small intestine.”

Nigella sativa’s thymoquinone ameliorates liver fibrosis

International ImmunopharmacologyWith the proliferation of NAFLD and NASH medicines that sustainably alleviate hepatic fibrosis are in urgent need. A study published in International Immunopharmacology offers evidence that thymoquinone, a principal compound in Nigella sativa, has potent hepatic anti-fibrotic effects:

Thymoquinone (TQ) is the major active compound derived from the medicinal Nigella sativa. In the present study, we investigated the anti-fibrotic mechanism of TQ in lipopolysaccharide (LPS)-activated rat hepatic stellate cells line, T-HSC/Cl-6. T-HSC/Cl-6 cells were treated with TQ (3.125, 6.25 and 12.5 μM) prior to LPS (1 μg/ml). Our data demonstrated that TQ effectively decreased activated T-HSC/Cl-6 cell viability. TQ significantly attenuated the expression of CD14 and Toll-like receptor 4 (TLR4). TQ also significantly inhibited phosphatidylinositol 3-kinase (PI3K) and serine/threonine kinase-protein kinase B (Akt) phosphorylation. The expression of α-SMA and collagen-I were significantly decreased by TQ. Furthermore, TQ decreased X linked inhibitor of apoptosis (XIAP) and cellular FLIP (c-FLIPL) expression, which are related with the regulation of apoptosis. Furthermore, TQ significantly increased the survival against LPS challenge in d-galactosamine (d-GlaN)-sensitized mice, and decreased the levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), which were in line with in vitro results. Our data demonstrated that TQ attenuates liver fibrosis partially via blocking TLR4 expression and PI3K phosphorylation on the activated HSCs. Therefore, TQ may be a potential candidate for the therapy of hepatic fibrosis.

A follow-up study published recently in the same journal added more evidence to Nigella sativa’s benefits for hepatic fibrosis:Hepatic fibrosis attenuated by thymoquinone

“The current study was conducted to investigate the anti-fibrotic effect and its possible underlying mechanisms of thymoquinone (TQ) against hepatic fibrosis in vivo. TQ is the major active compound derived from the medicinal Nigella sativa. Liver fibrosis was induced in male Kunming mice by intraperitoneal injections of thioacetamide (TAA, 200 mg/kg). Mice were treated concurrently with TAA alone or TAA plus TQ (20 mg/kg or 40 mg/kg) given daily by oral gavage. Our data demonstrated that TQ treatment obviously reversed liver tissue damage compared with TAA alone group, characterized by less inflammatory infiltration and accumulation of extracellular matrix (ECM) proteins. TQ significantly attenuated TAA-induced liver fibrosis, accompanied by reduced protein and mRNA expression of α-smooth muscle actin (α-SMA), collagen-І and tissue inhibitor of metalloproteinase-1 (TIMP-1). TQ downregulated the expression of toll-like receptor 4 (TLR4) and remarkably decreased proinflammatory cytokine levels as well. TQ also significantly inhibited phosphatidylinositol 3-kinase (PI3K) phosphorylation. Furthermore, TQ enhanced the phosphorylation adenosine monophosphate-activated protein kinase (AMPK) and liver kinase B (LKB)-1. In conclusion, TQ may reduce ECM accumulation, and it may be at least regulated by phosphorylation of AMPK signaling pathways, suggesting that TQ may be a potential candidate for the therapy of hepatic fibrosis.

 Protection against diabetic kidney damage

Ultrastructural PathologyThymoquinone in Nigella sativa also reduced experimentally induced kidney damage in models of diabetes as reported in a study published in Ultrastructural Pathology:

“Diabetic rats exhibited morphological changes in both renal glomeruli and tubules with immunohistochemical expression of the mesenchymal markers Fsp1, desmin, and MMP-17 and disappearance of the epithelial marker ZO-1 largely in the glomeruli of diabetic kidneys. Treatment with TQ significantly attenuated renal morphological and immunohistochemical changes in STZ-induced diabetic ratsThymoquinone has protective effects on experimental diabetic nephropathy. Both mesenchymal and epithelial markers serve as excellent predictors of early kidney damage and indicators of TQ responsiveness in STZ-induced diabetic nephropathy.”

Hypertension and Oxidative Stress

Regarding the anti-hypertensive effects of Nigella sativa, from a paperEvidence-Based Complementary and Alternative Medicine in Evidence-Based Complementary & Alternative Medicine:

Excessive production of reactive oxygen species reduces nitric oxide bioavailability leading to an endothelial dysfunction and a subsequent increase in total peripheral resistance…Nigella sativa (NS) and its active constituents have been documented to exhibit antioxidant, hypotensive, calcium channel blockade and diuretic properties which may contribute to reduce blood pressure. This suggests a potential role of NS in the management of hypertension…”

Protection Against Heart Damage

Pakistan Journal of Pharmaceutical SciencesNot surprisingly, thymoquinone in Nigella sativa appears to exert protective effects against heart damage associated with coronary insufficiency and stress as documented by a study in the Pakistan Journal of Pharmaceutical Sciences. Here again the beneficial effects include support for glutathione:

“Myocardial injury constitutes a major cause of morbidity and mortality in humans. Present study aimed to investigate protective role of thymoquinone, which is an active principle of Nigella sativa (N. sativa) seed (Commonly called as black seed), in isoproterenol induced myocardial injury, a classical example of excess catecholamines related coronary insufficiency and stress cardiomyopathy. Thymoquinone, in olive oil, was administered orally (12.5, 25 and 50mg/kg) to three groups of Wistar albino rats for 7 days, while two control groups were given plain olive oil. Thereafter, thymoquinone receiving groups and one control group were injected, subcutaneously, with isoproterenol (125mg/kg) for 2 days. Myocardial injury was assessed by biochemical markers (plasma LDH, TBARS, GR & SOD and myocardial GSH/GSSG ratio) and cardiac histopathology. Plasma LDH, TBARS and GR increased in control groups receiving isoproterenol, while there was a dose related decrease in these markers in thymoquinone treated groups, down to levels in controls given olive oil only. Decrease in plasma SOD and myocardial GSH/GSSG ratio and histological changes produced with isoproternol were also reversed in thymoquinone treated rats. Results of our study revealed that thymoquinone protects the heart from injury induced by isoproterenol.”

Anti-cancer effects of Nigella sativa

Drug Discovery TodayThere is a wealth of evidence supporting the use Nigella sativa and its active compound thymoquinone as an adjunctive treatment in numerous malignancies as noted in a paper published earlier this year in Drug Discovery Today:

“Thymoquinone (TQ), the main active constituent of black seed essential oil, exhibits promising effects against inflammatory diseases and cancer. TQ, modulates signaling pathways that are key to cancer progression, and enhances the anticancer potential of clinical drugs while reducing their toxic side effects. Considering that TQ was isolated 50 years ago, this review focuses on TQ’s chemical and pharmacological properties and the latest advances in TQ analog design and nanoformulation. We discuss our current state of knowledge of TQ’s adjuvant potential and in vivo antitumor activity and highlight its ability to modulate the hallmarks of cancer.

  • This year marks 50 years since thymoquinone was isolated from black seed.
  • Thymoquinone has had a long history of battling cancer in vitro and in vivo.
  • Thymoquinone modulates nine of the ten hallmarks of cancer.”

American Journal of Chinese MedicineA paper in the American Journal of Chinese Medicine reviews Nigella sativa’s anticancer activities:

“…quite a few pharmacological effects of N. sativa seed, its oil, various extracts and active components have been identified to include immune stimulation, anti-inflammation, hypoglycemic, antihypertensive, antiasthmatic, antimicrobial, antiparasitic, antioxidant and anticancer effects…A literature search has revealed that a lot more studies have been recently carried out related to the anticancer activities of N. sativa and some of its active compounds, such as thymoquinone and alpha-hederin. Acute and chronic toxicity studies have recently confirmed the safety of N. sativa oil and its most abundant active component, thymoquinone, particularly when given orally. The present work is aimed at summarizing the extremely valuable work done by various investigators on the effects of N. sativa seed, its extracts and active principles against cancer. Those related to the underlying mechanism of action, derivatives of thymoquinone, nano thymoquinone and combinations of thymoquinone with the currently used cytotoxic drugs are of particular interest.”

Thymoquinone mechanisms of actionA paper in the African Journal of Traditional, Complementary and Alternative Medicines describes its activity against a number of malignancies and the molecular mechanisms involved:

“Nigella sativa has been used as traditional medicine for centuries. The crude oil and thymoquinone (TQ) extracted from its seeds and oil are effective against many diseases like cancer, cardiovascular complications, diabetes, asthma, kidney disease etc. It is effective against cancer in blood system, lung, kidney, liver, prostate, breast, cervix, skin with much safety. The molecular mechanisms behind its anticancer role is still not clearly understood, however, some studies showed that TQ has antioxidant role and improves body’s defense system, induces apoptosis and controls Akt pathway. Although the anti-cancer activity of N. sativa components was recognized thousands of years ago but proper scientific research with this important traditional medicine is a history of last 2∼3 decades…In this article, we have summarized the actions of TQ and crude oil of N. sativa against different cancers with their molecular mechanisms.”

Pharmacognosy ReviewsA review article in Pharmacognosy Review notes the anti-cancer potential implied by numerous investigations:

“Thymoquinone (TQ) is the bioactive phytochemical constituent of the seeds oil of Nigella sativa. In vitro and in vivo research has thoroughly investigated the anticancer effects of TQ against several cancer cell lines and animal models. As a result, a considerable amount of information has been generated from research thus providing a better understanding of the anti-proliferating activity of this compound. Therefore, it is appropriate that TQ should move from testing on the bench to clinical experiments. The purpose of this review is to highlight the potential of TQ as an anticancer agent and the chances of this compound in the clinical treatment of cancer, with special attention on breast cancer treatment.”

Evidence-Based Complementary and Alternative MedicineA paper in Evidence-Based Complementary and Alternative Medicine outlines mechanisms by which thymoquinone in Nigella sativa can act to prevent cancer:

Earlier studies have shown that N. sativa and its constituent thymoquinone (TQ) have important roles in the prevention and treatment of cancer by modulating cell signaling pathways. In this review, we summarize the role of N. sativa and its constituents TQ in the prevention of cancer through the activation or inactivation of molecular cell signaling pathways.”

Upregulation of tumor suppressor gene and inhibition of VEGF, Akt/PI3K pathways:

Upregulation of tumor suppresor geneThymoquinone role in prevention of cancer via modulation of phase I and phase II enzymes:

Thymoquinone's role in cancer prevention

Osteosarcoma, angiogenesis and NF-κB

Oncology ReportsEvidence for thymoquinone’s benefit in osteosarcoma through inhibition of tumor angiogenesis and tumor growth by suppressing NF-κB is offered by a study published in Oncology Reports:

“Recent studies reported that thymoquinone exhibited inhibitory effects on the cell proliferation of several cancer cell lines. This study was performed to investigate the antitumor and anti-angiogenic effects of thymoquinone on osteosarcoma in vitro and in vivo. Our results showed that thymoquinone induced a higher percentage of growth inhibition and apoptosis in the human osteosarcoma cell line SaOS-2 compared to that of control, and thymoquinone significantly blocked human umbilical vein endothelial cell (HUVEC) tube formation in a dose-dependent manner. To investigate the possible mechanisms involved in these events, we performed electrophoretic mobility shift assay (EMSA) and western blot analysis, and found that thymoquinone significantly downregulated NF-κB DNA-binding activity, XIAP, survivin and VEGF in SaOS-2 cells. Moreover, the expression of cleaved caspase-3 and Smac were upregulated in SaOS-2 cells after treatment with thymoquinone. In addition to these in vitro results, we also found that thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing NF-κB and its regulated molecules. Collectively, our results demonstrate that thymoquinone effectively inhibits tumor growth and angiogenesis both in vitro and in vivo. Moreover, inhibition of NF-κB and downstream effector molecules is a possible underlying mechanism of the antitumor and anti-angiogenic activity of thymoquinone in osteosarcoma.”

Cytotoxic prooxidant effects of thymoquinone in copper rich malignant tissues

Cell Death & DiseaseUsing prostate cancer cells, a fascinating study published in Cell Death & Disease demonstrates that thymoquinone has a beneficial prooxidant cytoxic effect in copper-rich malignant tissue:

“Thymoquinone (TQ) is the major bioactive constituent of volatile oil of Nigella sativa and has been shown to exert various pharmacological properties, such as anti-inflammatory, cardiovascular, analgesic, anti-neoplastic, anticancer and chemopreventive…TQ is a known antioxidant at lower concentrations and most of the studies elucidating the mechanism have centered on the antioxidant property. However, recent publications have shown that TQ may act as a prooxidant at higher Nigella sativa flower 2concentrations. It is well known that plant-derived antioxidants can switch to prooxidants even at low concentrations in the presence of transition metal ions such as copper. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Copper is an important metal ion present in the chromatin and is closely associated with DNA bases, particularly guanine. Using human peripheral lymphocytes and comet assay, we first show that TQ is able to cause oxidative cellular DNA breakage. Such a DNA breakage can be inhibited by copper-chelating agents, neocuproine and bathocuproine, and scavengers of reactive oxygen species. Further, it is seen that TQ targets cellular copper in prostate cancer cell lines leading to a prooxidant cell death.”

Interestingly…

“We believe that such a prooxidant cytotoxic mechanism better explains the anticancer activity of plant-derived antioxidants.”

Inhibition of cell proliferation in liver cancer

Toxicology LettersMarked inhibition of tumor multiplicity in hepatocellular carcinoma was shown in a study published in Toxicology Letters:

“…agents that inhibit cell proliferation and restrain hepatic tumorigenesis through cell cycle regulation have a beneficial effect in the treatment of hepatocellular carcinogenesis. The present study was aimed to investigate the efficacy of thymoquinone (TQ), an active compound derived from the medicinal plant Nigella sativa, on N-nitrosodiethylamine (NDEA) [0.01% in drinking water for 16 weeks]-induced hepatocarcinogenesis in experimental rats. After experimental period, the hepatic nodules, liver injury markers and tumor markers levels were substantially increased in NDEA induced liver tumors in rats. However, TQ (20 mg/kg body weight) treatment greatly reduced liver injury markers and decreased tumor markers and prevented hepatic nodule formation and reduced tumor multiplicity in NDEA induced hepatic cancer bearing rats and this was evident from argyrophilic nucleolar organizer region (AgNORs) staining. Moreover…TQ significantly reduced the detrimental alterations by abrogating cell proliferation, which strongly induced G1/S arrest in cell cycle transition. In conclusion, our results suggest that TQ has a potent anti proliferative activity by regulating the G1/S phase cell cycle transition and exhibits a beneficial role in the treatment of HCC.”

Thymoquinone induces glioblastoma cell death

PLOS ONEA fascinating study in PLoS One demonstrates that thymoquinone is a rare agent that can inhibit autophagy (the cellular ‘housecleaning’ process by which degraded cellular components are removed) to promote malignant cell death in the brain cancer gliosblastoma:

“Glioblastoma is the most aggressive and common type of malignant brain tumor in humans, with a median survival of 15 months. There is a great need for more therapies for the treatment of glioblastoma…TQ has anti-oxidant, anti-inflammatory and anti-neoplastic actions with selective cytotoxicity for human cancer cells compared to normal cells. Here, we show that TQ selectively inhibits the clonogenicity of glioblastoma cells as compared to normal human astrocytes. Also, glioblastoma cell proliferation could be impaired by chloroquine, an autophagy inhibitor, suggesting that glioblastoma cells may be dependent on the autophagic pathway for survival…TQ also caused an accumulation of the LC3-associated protein p62, confirming the inhibition of autophagy. Furthermore, the levels of Beclin-1 protein expression were unchanged, indicating that TQ interferes with a later stage of autophagy. Finally, treatment with TQ induces lysosome membrane permeabilization…which mediates caspase-independent cell death… TQ induced apoptosis…”

Inhibition of autophagy by thymoquinoneThe authors note an important difference between the action of thymoquinone and other cytotoxic therapies:

Ionizing radiation and temozolomide have both been shown to increase a cytoprotective autophagy response in glioblastoma cells, leading to resistant tumors. In addition, many other chemotherapeutics, such as rapamycin, tamoxifen, and etoposide, induce a protective autophagic response in cancer cells. Therefore, inhibitors of autophagy, both alone and in combination with standard therapies, may provide a viable and promising new strategy in cancer treatment…To the best of our knowledge, this report represents the first finding of TQ as an autophagy inhibitor, and provides a platform for which to extend studies in the treatment of glioblastoma with TQ.”

The authors conclude:

“Inhibition of autophagy is an exciting and emerging strategy in cancer therapy. In this vein, our results describe a novel mechanism of action for TQ as an autophagy inhibitor selectively targeting glioblastoma cells.

Nigella sativa induces apoptosis in cervical cancer

Natural Product CommunicationsAccording to a study published in Natural Product Communications, Nigella sativa inhibits proliferation of cervical cancer cells by inducing apoptosis:

“Nigella sativa (NS) showed an 88.3% inhibition of proliferation of SiHa human cervical cancer cells at a concentration of 125 microL/mL methanolic extract at 24 h, and an IC50 value 93.2 microL/mL. NS exposure increased the expression of caspase-3, -8 and -9 several-fold. The analysis of apoptosis by Dead End terminal transferase-mediated dUTP-digoxigenin end labeling (TUNEL) assay was used to further confirm that NS induced apoptosis. Thus, NS was concluded to induce apoptosis in SiHa cell through both p53 and caspases activation. NS could potentially be an alternative source of medicine for cervical cancer therapy.”

Suppression of melanoma metastasis by inhibition of the NLRP3 inflammasome

Toxicology and Applied PharmacologyIn an exciting study published in Toxicology and Applied Pharmacology that has implications for a wide range of conditions, investigators report suppression of metastasis in melanoma inhibiting the proinflammatory activity of the NLRP3 inflammasome:

“The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β and IL-18 secretion. The NLRP3 (NACHT, LRR, and pyrin domain-containing protein 3) inflammasome is constitutively assembled and activated in human melanoma cells. We have examined the inhibitory effect of thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone), a major ingredient of black seed obtained from the plant Nigella sativa on metastatic human (A375) and mouse (B16F10) melanoma cell lines. We have assessed whether thymoquinone inhibits metastasis of melanoma cells by targeting NLRP3 subunit of inflammasomes. Using an in vitro cell migration assay, we found that thymoquinone inhibited the migration of both human and mouse melanoma cells…The inhibition of migration of melanoma cells by thymoquinone was accompanied by a decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by thymoquinone resulted in inhibition of IL-1β and IL-18. Treatment of mouse melanoma cells with thymoquinone also inhibited NF-κB activity. Furthermore, inhibition of reactive oxygen species (ROS) by thymoquinone resulted in partial inactivation of NLRP3 inflammasome. Thus, thymoquinone exerts its inhibitory effect on migration of human and mouse melanoma cells by inhibition of NLRP3 inflammasome. Thus, our results indicate that thymoquinone can be a potential immunotherapeutic agent not only as an adjuvant therapy for melanoma, but also, in the control and prevention of metastatic melanoma.”

Readers will recall that activation of the inflammasome is a mechanism shared by many autoimmune and malignant disorders.

Nigella sativa attenuates iNOS pathway inflammation in liver cancer

Environmental Health and Preventive MedicineBecause iNOS activation of inflammation is a key process in a multitude of inflammatory disorders including a host of autoimmune diseases, a study published in Environmental Health and Preventative Medicine showing value in hepatocellular carcinoma is of is of particular importance:

“Nitric oxide (NO) and inducible nitric oxide synthase enzyme (iNOS) have been implicated in various tumors….Nigella sativa (NS) has been shown to have specific health benefits. The aim of this study was to investigate the in vivo modulation of the iNOS pathway by NS ethanolic extract (NSEE) and the implications of this effect as an antitumor therapeutic approach against diethylnitrosamine (DENA)-induced hepatocarcinogenesis…Serum AFP, NO, TNF-α, and IL-6 levels and iNOS enzyme activity were significantly increased in rats treated with DENA. Significant up-regulation of liver iNOS mRNA and protein expression was also observed. Subsequent treatment with NSEE significantly reversed these effects and improved the histopathological changes in malignant liver tissue which appeared after treatment with DENA, without any toxic effect when given alone.”

This data inspired the authors to conclude:

“These results provide evidence that attenuation of the iNOS pathway and suppression of the inflammatory response mediated by TNF-α, and IL-6 could be implicated in the antitumor effect of NSEE. As such, our findings hold great promise for the utilization of NS as an effective natural therapeutic agent in the treatment of hepatocarcinogenesis.”

Cytotoxic effect against lung cancer

Asian Pacific Journal of Cancer PreventionAuthors of a study just published in the Asian Pacific Journal of Cancer Prevention report that Nigella sativa seed extract significantly reduces the viability of lung cancer cells:

Nigella sativa (N sativa), commonly known as black seed, has been used in traditional medicine to treat many diseases. The antioxidant, anti-inflammatory, and antibacterial activities of N sativa extracts are well known. Therefore, the present study was designed to investigate the anticancer activity of seed extract (NSE) and seed oil (NSO) of N sativa against a human lung cancer cell line…The results showed NSE and NSO significantly reduce the cell viability and alter the cellular morphology of A-549 cells in a concentration dependent manner. The percent cell viability was recorded as 75%, 50%, and 26% at 0.25, 0.5, and 1 mg/ml of NSE by MTT assay and 73%, 48%, and 23% at 0.25, 0.5, and 1 mg/ml of NSE by NRU assay. Exposure to NSO concentrations of 0.1 mg/ml and above for 24 h was also found to be cytotoxic. The decrease in cell viability at 0.1, 0.25, 0.5, and 1 mg/ml of NSO was recorded to be 89%, 52%, 41%, and 13% by MTT assay and 85%, 52%, 38%, and 11% by NRU assay, respectively. A-549 cells exposed to 0.25, 0.5 and 1 mg/ml of NSE and NSO lost their typical morphology and appeared smaller in size. The data revealed that the treatment of seed extract (NSE) and seed oil (NSO) of Nigella sativa significantly reduce viability of human lung cancer cells.

Nigella sativa inhibits breast cancer

PLOS ONEEvidence is mounting for the use of Nigella sativa against breast cancer. Similar to the prooxidant effect described above, a study published in PLoS One describes how thymoquinone inhibits tumor growth and induces apoptosis in breast cancer cells through p38 phosphorylation and ROS production:

“Due to narrow therapeutic window of cancer therapeutic agents and the development of resistance against these agents, there is a need to discover novel agents to treat breast cancer. The antitumor activities of thymoquinone (TQ), a compound isolated from Nigella sativa oil, were investigated in breast carcinoma in vitro and in vivo. Cell responses after TQ treatment were assessed by using different assays including MTT assay, annexin V-propidium iodide staining, Mitosox staining and Western blot. The antitumor effect was studied by breast tumor xenograft mouse model, and the tumor tissues were examined by histology and immunohistochemistry. The level of anti-oxidant enzymes/molecules in mouse liver tissues was measured by commercial kits. Here, we show that TQ induced p38 phosphorylation and ROS production in breast cancer cells. These inductions were found to be responsible for TQ’s anti-proliferative and pro-apoptotic effects. Moreover, TQ-induced ROS production regulated p38 phosphorylation but not vice versa. TQ treatment was found to suppress the tumor growth and this effect was further enhanced by combination with doxorubicin. TQ also inhibited the protein expression of anti-apoptotic genes, such as XIAP, survivin, Bcl-xL and Bcl-2, in breast cancer cells and breast tumor xenograft. Reduced Ki67 and increased TUNEL staining were observed in TQ-treated tumors. TQ was also found to increase the level of catalase, superoxide dismutase and glutathione in mouse liver tissues.”

Again we see increases in the profoundly important glutatione under the influence of thymoquinone. Note also that the antitumor effect of the conventional chemotherapeutic agent was enhanced.

“In conclusion, our study provides evidence for the mechanism of action of TQ in suppressing human breast carcinoma in both in vitro and in vivo models. We demonstrated that the anti-proliferative and pro-apoptotic effects of TQ are mediated through its induction effect on p38 and ROS signaling. Our results also indicate the anti-tumor effects of TQ in breast tumor xenograft mice and its ability to potentiate the antitumor effect of doxorubicin. TQ serves as a promising anticancer agent and further studies may provide important leads for its clinical application.”

Journal of Medicinal FoodA study published in the Journal of Medicinal Food also reports proapoptotic and antimetastatic effects of Nigella sativa for breast cancer:

“This study investigated the apoptotic, antimetastatic, and anticancer activities of supercritical carbon dioxide (SC-CO2) extracts of the seeds of N. sativa Linn. against estrogen-dependent human breast cancer cells (MCF-7)….Of the 12 extracts, 1 extract (A3) that was prepared at 60°C and 2500 psi (~17.24 MPa) showed selective antiproliferative activity against MCF-7 cells with an IC50 of 53.34±2.15 μg/mL. Induction of apoptosis was confirmed by evaluating caspases activities and observing the cells under a scanning electron microscope. In vitro antimetastatic properties of A3 were investigated by colony formation, cell migration, and cell invasion assays. The elevated levels of caspases in A3 treated MCF-7 cells suggest that A3 is proapoptotic. Further nuclear condensation and fragmentation studies confirmed that A3 induces cytotoxicity through the apoptosis pathway. A3 also demonstrated remarkable inhibition in migration and invasion assays of MCF-7 cells at subcytotoxic concentrations. Thus, this study highlights the therapeutic potentials of SC-CO2 extract of N. sativa in targeting breast cancer.”

Pharmacognosy ResearchAnd authors of a study published in Pharmacognosy Research also report activity of thymoquinone against breast cancer:

“The study addressed the anti-cancer efficiency of long-term in vitro treatment with thymoquinone towards human breast cancer cell lines MCF-7...The 50% inhibitory concentration (IC50) value determined using the proliferation assay was 25 μM thymoquinone. Late apoptotic cell percentage increased rapidly when treatment duration was increased to 24 h with 25 and 100 μM thymoquinone. Further analysis using cell cycle assay showed thymoquinone inhibition of breast cancer cell proliferation at minimal dose 25 μM and led to S phase arrest significantly at 72 h treatment. It was also noted elevation sub-G1 peak following treatment with 25 μM thymoquinone for 12 h. Increase in thymoquinone to 50 μM caused G2 phase arrest at each time-point studied…In general thymoquinone showed sustained inhibition of breast cancer cell proliferation with long-term treatment. Specificity of phase arrest was determined by thymoquinone dose.”

Asian Pacific Journal of Cancer PreventionAntiproliferative effects against breast cancer cells were also shown in a study published in the Asian Pacific Journal of Cancer Prevention:

“Our data showed that Nigella sativa extracts significantly inhibited human breast cancer MDA-MB-231 cell proliferation at doses of 2.5-5 μg/mL. Apoptotic induction in MDA-MB-231 cells was observed in a dose-dependent manner after exposure to Nigella sativa extracts for 48 h. Real time PCR and flow cytometry analyses suggested that Nigella sativa extracts possess the ability to suppress the proliferation of human breast cancer cells through induction of apoptosis.”

Nigella sativa protects against liver damage caused by tamoxifen

Canadian Journal of Physiology and PharmacologyProtection against the harmful toxic effects of chemotherapy is a critical component of cancer case management. A welcome study published in the Canadian Journal of Physiology and Pharmacology shows that thymoquinone from Nigella sativa protects against the hepatotoxicity of tamoxifen:

“One of the major reasons for terminating a clinical trial is the liver toxicity induced by chemotherapy. Tamoxifen (TAM) is an anti-estrogen used in the treatment and prevention of hormone-dependent breast cancer. Tamoxifen therapy may cause hepatic injury. The seeds of Nigella sativa, which contain the active ingredient thymoquinone (TQ), have been used in folk medicine for diverse ailments. TQ is reported to possess anticancer and hepatoprotective effects. In this study, the protective effects of TQ against TAM-induced hepatotoxicity in female rats were evaluated. Four groups of rats were used: control; TAM; TQ; TAM+TQ. TAM (45 mg·(kg body mass)(-1)·day(-1), by intraperitoneal injection (i.p.), for 10 consecutive days) resulted in elevated serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase, total bilirubin, and gamma glutamyl transferase, as well as depletion of reduced glutathione in the liver and accumulation of lipid peroxides. Also, TAM treatment inhibited the hepatic activity of superoxide dismutase. Further, it raised the levels of tumor necrosis factor alpha in the liver and induced histopathological changes. Pretreatment with TQ (50 mg·(kg body mass)(-1)·day(-1); orally, for 20 consecutive days, starting 10 days before TAM injection) significantly prevented the elevation in serum activity of the assessed enzymes. TQ significantly inhibited TAM-induced hepatic GSH depletion and LPO accumulation. Consistently, TQ normalized the activity of SOD, inhibited the rise in TNF-α and ameliorated the histopathological changes. In conclusion, TQ protects against TAM-induced hepatotoxicity.”

Again we see beneficial effects on glutatione metabolism.

Protection against kidney toxicity of cisplatin

Iranian Journal of Kidney DiseasesWhile on the topic of protection unwanted against damage done by cytotoxic chemotherapy, we can appreciate a study published in the Iranian Journal of Kidney Diseases reporting evidence that Nigella sativa offers some protection against the nephrotoxic effects of cisplatin:

“Thirty rats were divided into 3 groups to receive distilled water (control group), cisplatin (3 mg/kg per body weight for 3 days), and cisplatin and alcoholic extract of NS (100 mg/kg per body weight). Biochemical and histopathologic parameters were compared between the three groups on days 14 and 42 of the study…Cisplatin-induced nephrotoxicity was confirmed in our study…Histology of the kidneys exposed to cisplatin showed significant kidney injury, but the rats treated with NS showed a relatively well-preserved architectureNigella sativa seeds had nonsignificant effects on biochemical parameters, although the histopathologic properties of the kidneys relatively recovered after NS use.”

Nigella sativa benefits for the brain, mood and cognition

Journal of EthnopharmacologyConsidering the immune-regulating and anti-inflammatory virtues of Nigella sativa it stands to reason that there would be benefits for the brain. A study published in the Journal of Ethnopharmacology reports that it helps stabilize mood, reduce anxiety and cognition in adolescent males.

“Previous studies conducted on animals linked consumption of Nigella sativa L. seeds (NS) to decreased anxiety and improved memory. The present study, which was carried out at a boarding school in Bangladesh, was designed to examine probable effect of NS on mood, anxiety and cognition in adolescent human males…Forty-eight healthy adolescent human males aged between 14 to 17 years were randomly recruited as volunteers and were randomly split into two groups: A (n=24) and B (n=24). The treatment procedure for group A and B were one capsule of 500 mg placebo and 500 mg NS respectively once daily for four weeks. All the volunteers were assessed for cognition with modified California verbal learning test-II (CVLT-II), mood with Bond–Lader scale and anxiety with State–Trait Anxiety Inventory (STAI) at the beginning and after four weeks of either NS or placebo ingestion…Over the 4 weeks study period, the use of NS as a nutritional supplement been observed to- stabilize mood, decrease anxiety and modulate cognition positively.”

Relieving neuroinflammation of depression

Journal of Pharmacy & BioAllied SciencesIt’s well known than neuroimmune inflammation plays a fundamental role in depression. Authors of a study published in the Journal of Pharmacy & BioAllied Sciences present welcome evidence that Nigella sativa and thymoquinone may relieve depression by reducing neuroinflammation:

Neuroimmune factors have been proposed as contributors to the pathogenesis of depression. Beside other therapeutic effects including neuroprotective, antioxidant, anticonvulsant and analgesic effects, Nigella sativa and its main ingredient, thymoquinone (TQ), have been shown to have anti-inflammatory effects. In the present study, the effects of Nigella sativa hydro-alcoholic extract and thymoquinone was investigated on lipopolysaccharide- induced depression like behavior in rats…The results of the present study showed that hydro-alcoholic extract of Nigella sativa can prevent LPS-induced depression like behavior in rats. These results support the traditional belief on the beneficial effects of Nigella sativa in the nervous system.”

Thymoquinone ameliorates lead-induced brain damage

Experimental and Toxicologic PathologyEnvironmental toxicity is a concern for brain health; an exciting study published Experimental and Toxicologic Pathology indicates that thymoquinone from Nigella sativa protects against brain damage from lead:

“The present study aims to investigate the protective effects of thymoquinone, the major active ingredient of Nigella sativa seeds, against lead-induced brain damage in Sprague-Dawley rats. In which, 40 rats were divided into four groups (10 rats each). The first group served as control. The second, third and fourth groups received lead acetate, lead acetate and thymoquinone, and thymoquinone only, respectively, for one month. Lead acetate was given in drinking water at a concentration of 0.5 g/l (500 ppm). Thymoquinone was given daily at a dose of 20 mg/kg b.w. in corn oil by gastric tube. Control and thymoquinone-treated rats showed normal brain histology. Treatment of rats with lead acetate was shown to produce degeneration of endothelial lining of brain blood vessels with peri-vascular cuffing of mononuclear cells consistent to lymphocytes, congestion of choroid plexus blood vessels, ischemic brain infarction, chromatolysis and neuronal degeneration, microglial reaction and neuronophagia, degeneration of hippocampal and cerebellar neurons, and axonal demyelination. On the other hand, co-administration of thymoquinone with lead acetate markedly decreased the incidence of lead acetate-induced pathological lesions.”

Protection against Parkinson’s disease α-synuclein-induced synapse damage

Neuroscience LettersAgents that offer protection against α-synuclein toxicity are welcome in the treatment of Parkinson’s disease and dementia. A study recently published in Neuroscience Letters presents evidence that thymoquinone from Nigella sativa has this property:

“The present study aimed to determine whether TQ protects against α-synuclein (αSN)-induced synaptic toxicity in rat hippocampal and human induced pluripotent stem cell (hiPSC)-derived neurons. Here, we report that αSN decreased the level of synaptophysin, a protein used as an indicator of synaptic density, in cultured hippocampal and hiPSC-derived neurons. However, simultaneous treatment with αSN and TQ protected neurons against αSN-induced synapse damage, as revealed by immunostaining. Moreover, administration of TQ efficiently induced protection in these cells against αSN-induced inhibition of synaptic vesicle recycling in hippocampal and hiPSC-derived neurons as well as against mutated P123H β-synuclein (βSN) in hippocampal neurons, as revealed by experiments using the fluorescent dye FM1-43. Using a multielectrode array, we further demonstrated that the treatment of hiPSC-derived neurons with αSN induced a reduction in spontaneous firing activity, and cotreatment with αSN and TQ partially reversed this loss. These results suggest that TQ protects cultured rat primary hippocampal and hiPSC-derived neurons against αSN-induced synaptic toxicity and could be a promising therapeutic agent for patients with Parkinson’s disease and dementia with Lewy bodies.

Thymoquinone prevents β-amyloid neurotoxicity of Alzheimer’s disease

Cellular and Molecular NeurobiologyOf great interest in the prevention of Alzheimer’s disease are agents that may protect agains β-amyloid neurotoxicity. Here too thymoquinone has effect as reported in a study published in Cellular and Molecular Neurobiology:

Thymoquinone (TQ), a bioactive constituent of Nigella sativa Linn (N. sativa) has demonstrated several neuropharmacological attributes. In the present study, the neuroprotective properties of TQ were investigated by studying its anti-apoptotic potential to diminish β-amyloid peptide 1-40 sequence (Aβ1-40)-induced neuronal cell death in primary cultured cerebellar granule neurons (CGNs)…Pretreatment of CGNs with TQ (0.1 and 1 μM) and subsequent exposure to 10 μM Aβ1-40 protected the CGNs against the neurotoxic effects of the latter. In addition, the CGNs were better preserved with intact cell bodies, extensive neurite networks, a loss of condensed chromatin and less free radical generation than those exposed to Aβ1-40 alone. TQ pretreatment inhibited Aβ1-40-induced apoptosis of CGNs via both extrinsic and intrinsic caspase pathways. Thus, the findings of this study suggest that TQ may prevent neurotoxicity and Aβ1-40-induced apoptosis. TQ is, therefore, worth studying further for its potential to reduce the risks of developing Alzheimer’s disease.”

 Nigella sativa protects and promotes healing from nerve trauma

Pathologie BiologieA study published Pathologie Biologie reports that Nigella sativa improves the neurodegeneration typical after nerve trauma:

“The aim of this study was designed to evaluate the possible protective effects of Nigella sativa (NS) on the neuronal injury in the sciatic nerve of rats. The rats were randomly allotted into one of the three experimental groups: A (control), B (only trauma) and C (trauma and treated with NS); each group contain 10 animals… To date, no histopathological changes of neurodegeneration in the sciatic nerve after trauma in rats by NS treatment have been reported. Results showed in the group B (only trauma), the neurons of sciatic nerve tissue became extensively dark and degenerated with picnotic nuclei. Treatment of NS markedly reduced degenerating neurons after trauma and the distorted nerve cells were mainly absent in the NS-treated rats. The morphology of neurons in groups treated with NS was well protected, but not as neurons of the control group. The number of neurons in sciatic nerve tissue of group B (only trauma) was significantly less than both control and treated with NS groups. The morphology of neurons revealed that the number of neurons were significantly less in group B compared to control and group C rats’ motor neurons anterior horn spinal cord tissue. We conclude that NS therapy causes morphologic improvement on neurodegeneration in sciatic nerve after trauma in rats.”

Nigella sativa for osteoporosis

Evidence-Based Complementary and Alternative MedicineConsidering that inflammation plays a key role in osteoporosis, it’s reasonable to investigate the use Nigella sativa as described in a paper in Evidence-Based Complementary and Alternative Medicine:

“Animal studies have shown that NS and TQ may be used for the treatment of diabetes-induced osteoporosis and for the promotion of fracture healing. The mechanism involved is unclear, but it was postulated that the antioxidative, and anti-inflammatory activities may play some roles in the treatment of osteoporosis as this bone disease has been linked to oxidative stress and inflammation. This paper highlights studies on the antiosteoporotic effects of NS and TQ, the mechanisms behind these effects and their safety profiles. NS and TQ were shown to inhibit inflammatory cytokines such as interleukin-1 and 6 and the transcription factor, nuclear factor κB. NS and TQ were found to be safe at the current dosage for supplementation in human with precautions in children and pregnant women. Both NS and TQ have shown potential as antiosteoporotic agent but more animal and clinical studies are required to further assess their antiosteoporotic efficacies.”

Inhibition of osteoporosis by Nigella sativa

BMC Complementary & Alternative MedicineIn an exciting study published in the BMC Complementary and Alternative Medicine, investigators report the reversal of osteoporosis in subjects whose ovaries had been removed:

“There is a direct relationship between the lack of estrogen after menopause and the development of osteoporosis…Nigella Sativa (NS) has been shown to have beneficial effects on bone and joint diseases. The present study was conducted to elucidate the protective effect of Nigella Sativa on osteoporosis produced by ovariectomy in rats…Female Wistar rats aged 12-14 months were divided into three groups: sham-operated control (SHAM), ovariectomized (OVX), and ovariectomized supplemented with nigella sativa (OVX-NS) orally for 12 weeks; 4 weeks before ovariectomy and 8 weeks after…OVX rats showed significant decrease in plasma Ca(+2), accompanied by a significant increase in plasma ALP, amino terminal collagen type 1 telopeptide, MDA, nitrates, TNF-α and IL-6. These changes were reversed by NS supplementation in OVX-NS group to be near SHAM levels. Histological examination of the tibias revealed discontinuous eroded bone trabeculae with widened bone marrow spaces in OVX rats accompanied by a significant decrease in both cortical and trabecular bone thickness compared to Sham rats. These parameters were markedly reversed in OVX-NS rats. Histological examination of the liver showed mononuclear cellular infiltration and congestion of blood vessels at the portal area in OVX rats which were not found in OVX-NS rats.”

Their data supported this exciting conclusion:

“It can be concluded that NS has shown potential as a safe and effective antiosteoporotic agent, which can be attributed to its high content of unsaturated fatty acids as well as its antioxidant and anti-inflammatory properties.”

Nigella sativa helps with psoriasis

Pharmacognosy MagazineConsidering its antiinflammatory and immunomodulating characteristics it seems a good bet that Nigella sativa would help with psoriasis as described in a study published in Pharmacognosy Magazine:

“The screening of antipsoriatic activity of 95% of ethanolic extract of Nigella sativa seeds by using mouse tail model for psoriasis and in vitro antipsoriatic activity was carried out by SRB Assay using HaCaT human keratinocyte cell lines….The ethanolic extract of Nigella sativa seeds extract produced a significant epidermal differentiation, from its degree of orthokeratosis (71.36±2.64) when compared to the negative control (17.30±4.09%)…The 95% ethanolic extract of Nigella sativa shown IC50 239 μg/ml, with good antiproliferant activity compared to Asiaticoside as positive control which showed potent activity with IC50 value of 20.13 μg/ml. From the present study it can be said that topical application of 95% ethanolic extract of Nigella sativa seeds has antipsoriatic activity and the external application is be beneficial in the management of psoriasis.”

Assists in treatment of vitiligo

Iranian Red Crescent Medical JournalNIgella sativa is an agent to consider in case management of any autoimmune disorder including vitiligo, for which it showed benefit in a study published in the Iranian Red Crescent Medical Journal:

Vitiligo is one of the autoimmune skin diseases that destroy the melanocytes of the skin…The aim of this study was to compare the effect of Nigella sativa and fish oil on vitiligo lesions of the patients referred to a dermatology clinic…After six months, a mean score of VASI decreased from 4.98 to 3.75 in patients applying topical Nigella sativa and from 4.98 to 4.62 in those using topical fish oil…In the current study, administration of Nigella sativa and fish oil significantly decreased skin lesions size, indicating an improvement in clinical condition…the depigmented areas were reduced over time and the skin color showed improvement. One reason for this positive response to treatment is the thymoquinone component of Nigella sativa…Thymoquinone can simulate the activity of acetylcholine, which causes the release of melanin and darkening of the skin through stimulation of cholinergic receptors. In addition, Nigella sativa oil administration was tolerable as well as safe and improved oxidative stress and clinical condition of patients…It was also shown that this type of treatment has no significant side effects and resulted in high patient satisfaction and acceptance.”

The authors state in conclusion:

“Nigella sativa oil and fish oil were effective in reduction the size of patient’s lesions; however, Nigella sativa was more effective in comparison to the fish oil. Therefore, using Nigella sativa with the major drugs in the treatment of vitiligo is recommended.”

Topical treatment of allergic rhinitis

Anti-Inflammatory & Anti-Allergy Agents in Medicinal ChemistryAllergic rhinitis as a chronic inflammatory disorder also responds to Nigella sativa applied topically as reported in Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry:

Allergic rhinitis (AR) is the most common manifestation of atopic reaction to inhaled allergens. It is a chronic inflammatory disease which may first appear at any age, but the onset is usually during childhood or adolescence…The individuals in the active group received N. sativa oil and the control group individuals received ordinary food oil in the form of nasal drops for 6 weeks…After the 6 weeks treatment course, 100% of the patients in the mild active group became symptoms free; while in moderate active group 68.7% became symptoms free and 25% were improved; while in severe active group 58.3% became symptoms free and 25% were improved. In addition, 92.1% of total patients in the active group demonstrated improvement in their symptoms or were symptoms free, while the corresponding value was 30.1% in the control group. At the end of 6 weeks of treatment with topical use, the improvement in tolerability of allergen exposure in active group became 55.2% which was significant as compared with control group which was accounted for 20% at the same time…Topical application of black seed oil was effective in the treatment of allergic rhinitis, with minimal side effects.”

Nigella sativa protects against radiation damage

Journal of Investigative SurgeryRadiation therapy can produce substantial ‘collateral damage’. Authors of a study just published in the Journal of Investigative Surgery demonstrate that Nigella sativa reduces oxidative stress in animals subjected to total head irradiation:

“Many cancer patients treated with radiotherapy suffer severe side effects during and after their treatment. The aim of this study was to investigate the effects of irradiation and the addition of Nigella sativa oil (NSO) on the oxidant/antioxidant system in the liver tissue of irradiated rats…The control group received neither NSO nor irradiation but received 1-ml saline orally. The irradiation group (IR) received total head 5 gray (Gy) of gamma irradiation as a single dose, plus 1-ml saline orally. The IR plus NSO group received both total head 5 Gy of gamma irradiation as a single dose and 1 g/kg/day NSO orally through an orogastric tube starting one hour before irradiation and continuing for 10 days…Conclusions: NSO reduces oxidative stress markers and has antioxidant effects, which also augments the antioxidant capacity in the liver tissue of rats.”

Cutaneous and Ocular ToxicologyNigella sativa was shown to reduce radiation-induced cataracts in a study published in Cutaneous and Ocular Toxicology:

“The aim of this study was to investigate the antioxidant and radioprotective effects of Nigella sativa oil (NSO) and thymoquinone (TQ) against ionizing radiation-induced cataracts in lens after total cranium irradiation (IR) of rats with a single dose of 5 gray (Gy)…At the end of the 10th d, cataract developed in 80% of the rats in IR group only. After IR, cataract rate dropped to 20% and 50% in groups which were treated with NSO and TQ, respectively, and was limited at grades 1 and 2. Nitric oxide synthase activity, nitric oxide and peroxynitrite levels in the radiotherapy group were higher than those of all other groups. Conclusions: The results implicate a major role for NSO and TQ in preventing cataractogenesis in ionizing radiation-induced cataracts in the lenses of rats, wherein NSO were found to be more potent.”

PhytomedicineAnd protection from radiation-induced damage to brain tissue was demonstrated in a study recently published in the journal Phytomedicine designed…

“To investigate Nigella sativa oil (NSO) and Thymoquinone (TQ) for their antioxidant effects on the brain tissue of rats exposed to ionizing radiation….Levels of NO· and ONOO(-), and enzyme activity of NOS in brain tissue of the rats treated with NSO or TQ were found to be lower than in received IR alone (p<0.002) Nigella sativa oil (NSO) and its active component, TQ, clearly protect brain tissue from radiation-induced nitrosative stress.

 Activity against Staphylococcal and fungal skin infections

Pakistan Journal of Biological SciencesNigella sativa is a benevolent agent in the treatment of skin infection and inflammation as documented by a study published in the Pakistan Journal of Biological Sciences:

“Nigella sativa has been used for a long time in Jordanian folk medicine to treat skin diseases like microbial infections and inflammation. Therefore, the present study was conducted to assess the healing efficacy of petroleum ether extract of Nigella sativa seeds (fixed oil) on staphylococcal-infected skin. Male BALB/c mice were infected with 100 microL of Staphylococcus aureus (ATCC 6538)… Application of treatments for each group (100 microL sterile saline, 100 microL chloramphenicol (10 microg/mouse) and Nigella sativa fixed oil at a dose of 50, 100 or 150 microL/mouse) was performed at the site of infection… At day 3 and 5 after infection, total White Blood Cells (WBCs) count; differential and absolute differential WBC counts and the number of viable bacteria present in the skin area were measured…Results indicated that fixed oil of Nigella sativa seeds enhance healing of staphylococcal-infected skin by reducing total and absolute differential WBC counts, local infection and inflammation, bacterial expansion and tissue impairment. These effects provide scientific basis for the use of Nigella sativa in traditional medicine to treat skin infections and inflammations.

Journal of EthnopharmacologyThe authors of a study published in the Journal of Ethnopharmacology report effectiveness against fungal skin infections (dermatophytes):

“The antifungal activity of ether extract of Nigella sativa seed and its active principle thymoquinone was tested against eight species of dermatophytes: four species of Trichophyton rubrum and one each of Trichophyton interdigitale, Trichophyton mentagrophytes, Epidermophyton floccosum and Microsporum canis. Agar diffusion method with serial dilutions of ether extract of Nigella sativa, thymoquinone and griseofulvin was employed…The minimum inhibitory concentration (MIC) was considered as the minimum concentration of the drug, which inhibited 80–100% of the fungal growth. The MICs of the ether extract of Nigella sativa and thymoquinone were between 10 and 40 and 0.125 and 0.25 mg/ml…These results denote the potentiality of Nigella sativa as a source for antidermatophyte drugs and support its use in folk medicine for the treatment of fungal skin infections.”

Case report of seroreversion in HIV

Afr J Tradit Complement Altern Med.A case report published in the African Journal of Traditional, Complementary, and Alternative Medicines presents unexpected results in the treatment of HIV:

“Nigella sativa had been documented to possess many therapeutic functions in medicine but the least expected is sero-reversion in HIV infection which is very rare despite extensive therapy with highly active anti-retroviral therapy (HAART). This case presentation is to highlight the complete recovery and sero-reversion of adult HIV patient after treatment with Nigella sativa concoction for the period of six months. The patient presented to the herbal therapist with history of chronic fever, diarrhoea, weight loss and multiple papular pruritic lesions of 3 months duration. Examination revealed moderate weight loss, and the laboratory tests of ELISA (Genscreen) and western blot (new blot 1 & 2) confirmed sero-positivity to HIV infection with pre-treatment viral (HIV-RNA) load and CD4 count of 27,000 copies/ml and CD4 count of 250 cells/ mm(3) respectively. The patient was commenced on Nigella sativa concoction 10 mls twice daily for 6 months. He was contacted daily to monitor side-effects and drug efficacy. Fever, diarrhoea and multiple pruritic lesions disappeared on 5th, 7th and 20th day respectively on Nigella sativa therapy. The CD4 count decreased to 160 cells/ mm3 despite significant reduction in viral load (≤1000 copies/ml) on 30th day on N. sativa. Repeated EIA and Western blot tests on 187th day on Nigella sativa therapy was sero-negative. The post therapy CD4 count was 650 cells/ mm(3) with undetectable viral (HIV-RNA) load. Several repeats of the HIV tests remained sero-negative, aviraemia and normal CD4 count since 24 months without herbal therapy. This case report reflects the fact that there are possible therapeutic agents in Nigella sativa that may effectively control HIV infection.

Improvement in semen quality

PhytomedicineAnother study published in Phytomedicine presents evidence from a double-blind, placebo-controlled that Nigella sativa improves abnormal semen quality in infertility:

“Since Nigella sativa L. seed (N. sativa) has many uses including infertility in traditional medicine, the effects of Nigella sativa L. seed oil on abnormal semen quality in infertile men with abnormal semen quality are of interest. This study was conducted on Iranian infertile men with inclusion criteria of abnormal sperm morphology less than 30% or sperm counts below 20×10(6)/ml or type A and B motility less than 25% and 50% respectively. The patients in N. sativa oil group (n=34) received 2.5mlN. sativa oil and placebo group (n=34) received 2.5ml liquid paraffin two times a day orally for 2 months. At baseline and after 2 months, the sperm count, motility and morphology and semen volume, pH and round cells as primary outcomes were determined in both groups. Results showed that sperm count, motility and morphology and semen volume, pH and round cells were improved significantly in N. sativa oil treated group compared with placebo group after 2 months. It is concluded that daily intake of 5ml N. sativa oil for two months improves abnormal semen quality in infertile men without any adverse effects.”

Is Nigella sativa safe?

Advanced Pharmaceutical BulletinA study investigating the potential for liver toxicity was reported last year in the journal Advanced Pharmaceutical Bulletin:

“The aim of this study was to determine the toxic effect of Nigella sativa powder on the liver function which was evaluated by measuring liver enzymes and through histopathological examination of liver tissue…Twenty four male Sprague Dawley rats were allotted randomly to four groups including: control (taking normal diet); low dose (supplemented with 0.01 g/kg/day Nigella sativa); normal dose (supplemented with 0.1 g/kg/day Nigella sativa) and high dose (supplemented with 1 g/kg/day Nigella sativa)…To assess liver toxicity, liver enzymes measurement and histological study were done at the end of supplementation…The study showed that supplementation of Nigella sativa up to the dose of 1 g/kg supplemented for a period of 28 days resulted no changes in liver enzymes level and did not cause any toxicity effect on the liver function

The authors stated this conclusion regarding human consumption of Nigella sativa:

“With the evidence of normal ALT and AST level in blood and normal liver tissue in histology examination for all treatment groups, it is suggested that there are no toxic effect on liver function of Nigella sativa at different doses for 4 weeks period. As a conclusion, popular consumption of Nigella sativa powder by human did not cause any toxicity effect on the liver function and safe to be consumed for many purposes.”

 Protection against alcohol-induced liver injury

Chinese Journal of Natural MedicinesNot only is Nigella sativa safe for the liver, but a study published in the Chinese Journal of Natural Medicines provides data showing that it protects the liver against oxidative damage caused by alcohol:

Nigella sativa L. (Ranunculaceae) is considered as a therapeutic plant-based medicine for liver damage. In this study, the aim was to study the effect of Nigella sativa oil (NSO) pretreatment on ethanol-induced hepatotoxicity in rats…Rats were given Nigella sativa oil at doses of 2.5 and 5.0 mL·kg(-1), orally for 3 weeks, followed by oral ethanol (EtOH) administration (5 g·kg(-1)) every 12 h three times (binge model).”

Amazingly…

Binge ethanol application caused significant increases in plasma transaminase activities and hepatic triglyceride and malondialdehyde (MDA) levels. It decreased hepatic glutathione (GSH) levels, but did not change vitamins E and vitamin C levels and antioxidant enzyme activities. NSO (5.0 mL·kg(-1)) pretreatment significantly decreased plasma transaminase activities, hepatic MDA, and triglyceride levels together with amelioration in hepatic histopathological findings.”

Based on these findings the authors conclude:

“NSO pretreatment may be effective in protecting oxidative stress-induced hepatotoxicity after ethanol administration.”

Practical use of Nigella sativa

Nigella sativa seeds 3The foregoing sampling of studies from the scientific literature on Nigella sativa should not be construed as an endorsement for its use in any specific case or condition. It is a presentation of the extraordinary scope of action and clinical potential of an agent that I am finding valuable in practice. Colleagues who are interested in knowing the particular Nigella sativa whole seed extract that I am using are welcome to contact me. For the general reader, I caution against taking anything (especially something found on the internet) without having first discussed it with your knowledgeable health care practitioner who has the background and depth to advise on how this may fit into your treatment or health maintenance plan.