Insulin resistance increases cardiovascular disease

Insulin resistance (IR), resistance of the insulin receptor due to overstimulation, elicits a rise of insulin levels to overcome the reduced receptor sensitivity. The resulting elevated insulin levels damage tissues throughout the body, and are a major contributing cause of cardiovascular disease. This is well known to many practitioners, so it was disturbing to read an article in the New York Times describing endocrinologists who are baffled by the fact that medications for type 2 diabetes that increase insulin levels worsen the risk for cardiovascular disease. The wealth of scientific evidence has been accumulating for a long time.

Insulin resistance and coronary artery disease

Insulin resistance and CADA study published in 1996 in the journal Diabetologia described the strong connection between CAD (coronary artery disease) and insulin resistance with its consequent hyperinsulinemia.

“The purpose of the present study was to quantitate insulin-mediated glucose disposal in normal glucose tolerant patients with angiographically documented coronary artery disease (CAD) and to define the pathways responsible for the insulin resistance.”

Of particular interest is that all the study subjects, both those with CAD and controls, had a normal oral glucose tolerance test. HOWEVER…

Fasting plasma insulin concentration and area under the plasma insulin curve following glucose ingestion were increased in CAD vs control subjects. Insulin-mediated whole body glucose disposal was significantly decreased in CAD subjects and this was entirely due to diminished non-oxidative glucose disposal. The magnitude of insulin resistance was positively correlated with the severity of CAD.”

It is hard to over emphasize the importance to clinicians of being vigilant in recognizing insulin resistance in the presence of normal glucose levels.

“In the CAD subjects basal and insulin-mediated rates of glucose and lipid oxidation were normal and insulin caused a normal suppression of hepatic glucose production. In conclusion, subjects with angiographically documented CAD are characterized by moderate-severe insulin resistance and hyperinsulinaemia and should be included in the metabolic and cardiovascular cluster of disorders that comprise the insulin resistance syndrome or ’syndrome X’.

Hypertension, Dyslipidemia, and Atherosclerotic Cardiovascular Disease

In 1991 a paper published in Diabetes Care described how insulin resistance promotes multiple factors that cause atherosclerosis.

“Diabetes mellitus is commonly associated with systolic/diastolic hypertension, and a wealth of epidemiological data suggest that this association is independent of age and obesity. Much evidence indicates that the link between diabetes and essential hypertension is hyperinsulinemia. Thus, when hypertensive patients, whether obese or of normal body weight, are compared with age- and weight-matched normotensive control subjects, a heightened plasma insulin response to a glucose challenge is consistently found.”


“…insulin resistance…correlates directly with the severity of hypertension. The reasons for the association of insulin resistance and essential hypertension can be sought in at least four general types of mechanisms: Na+ retention, sympathetic nervous system overactivity, disturbed membrane ion transport, and proliferation of vascular smooth muscle cells.”

It is also well-known that IR with its hyperinsulinemia cause elevated lipid levels.

Insulin resistance and hyperinsulinemia are also associated with an atherogenic plasma lipid profile. Elevated plasma insulin concentrations enhance very-low-density lipoprotein (VLDL) synthesis, leading to hypertriglyceridemia. Progressive elimination of lipid and apolipoproteins from the VLDL particle leads to an increased formation of intermediate-density and low-density lipoproteins, both of which are atherogenic.”

And elevated insulin directly fosters atherosclerosis:

“Last, insulin, independent of its effects on blood pressure and plasma lipids, is known to be atherogenic. The hormone enhances cholesterol transport into arteriolar smooth muscle cells and increases endogenous lipid synthesis by these cells. Insulin also stimulates the proliferation of arteriolar smooth muscle cells, augments collagen synthesis in the vascular wall, increases the formation of and decreases the regression of lipid plaques, and stimulates the production of various growth factors. In summary, insulin resistance appears to be a syndrome that is associated with a clustering of metabolic disorders, including non-insulin-dependent diabetes mellitus, obesity, hypertension, lipid abnormalities, and atherosclerotic cardiovascular disease.”


Controlling insulin resistance more important than glucose or LDLA more recent study in Diabetes Care presents striking data demonstrating the massive impact reduction in heart attacks that would occur by preventing insulin resistance. In setting out to determine what portion of coronary artery disease is caused by IR, the authors used data from the National Health and Nutrition Examination Survey 1998–2004 to simulate a population representative of young adults in the U.S. They applied the Archimedes model was to estimate the proportion of heart attacks that would be prevented by maintaining insulin resistance at healthy levels. Their data painted a dramatic picture:

“In young adults, preventing insulin resistance would prevent ∼42% of myocardial infarctions. The next most important determinant of CAD is systolic hypertension, prevention of which would reduce myocardial infarctions by ∼36%. Following systolic blood pressure, the most important determinants are HDL cholesterol (31%), BMI (21%), LDL cholesterol (16%), triglycerides (10%), fasting plasma glucose and smoking (both ∼9%), and family history (4%).”

Preventing insulin resistance beat the pants off controlling LDL cholesterol and smoking! Interestingly, they found that the effects were especially important for women:

“The effects of insulin resistance are also affected by sex. Today’s young men face a higher rate of myocardial infarctions than today’s young women: 55 vs. 32%. However, insulin resistance plays a larger relative role in women than in men, with normalization of insulin resistance reducing the myocardial infarction rate ∼57% for women (from 32 to 14%), compared with ∼29% (from 55 to 39%) for men.”

Preventing insulin resistance carries more weight than controlling glucose

In their conclusion the authors make points that are crucial for clinicians to bear in mind:

“Of the risk factors that we believe are sufficiently well studied to permit quantitative analysis, insulin resistance is the most important single risk factor for CAD. Our results indicate that insulin resistance is responsible for approximately 42% of myocardial infarctions. Its effect on CAD is indirect, mediated through its effects on other variables such as SBP, HDL cholesterol, triglycerides, glucose, and apoB.”

Effect of insulin resistance on myocardial infarction

In comparing their results with other research, the authors highlight the critical error made by depending on medications that increase insulin to control glucose:

“Our results are not directly comparable with those of clinical trials, where the effects of glucose lowering on CAD were either much smaller or null. The reason is that in the clinical trials, the focus was on lowering blood glucose—not preventing or curing insulin resistance. The drugs used in the trials either lowered glucose without affecting insulin resistance (e.g., sulfonylureas and insulin) or lowered insulin resistance to some extent but did not eliminate it (e.g., metformin and rosiglitazone). Furthermore, we normalized insulin resistance over the entire lifetimes of the subjects, whereas the treatments in the trials were given only after individuals had developed diabetes and were given only for the limited durations of the studies. Thus, the results of the trials do not represent the full eff

ect of normalizing insulin resistance and are actually consistent with our results.”

Note the implication that cardiovascular damage by IR occurs long before losing glucose control and crossing the border into diabetes territory.

Insulin resistance without diabetes causes cardiovascular disease

Investigators publishing in PLoS One make the same point about cardiovascular damage caused by IR well before diabetes sets in.

“To enable a comparison between cardiovascular disease risks for glucose, insulin and HOMA-IR, we calculated pooled relative risks per increase of one standard deviation…We included 65 studies (involving 516,325 participants) in this meta-analysis. In a random-effect meta-analysis the pooled relative risk of CHD (95% CI; I2) comparing high to low concentrations was 1.52 (1.31, 1.76; 62.4%) for glucose, 1.12 (0.92, 1.37; 41.0%) for insulin and 1.64 (1.35, 2.00; 0%) for HOMA-IR. The pooled relative risk of CHD per one standard deviation increase was 1.21 (1.13, 1.30; 64.9%) for glucose, 1.04 (0.96, 1.12; 43.0%) for insulin and 1.46 (1.26, 1.69; 0.0%) for HOMA-IR.”

They concluded that insulin resistance (HOMA-IR) was the leading culprit:

“The relative risk of cardiovascular disease was higher for an increase of one standard deviation in HOMA-IR compared to an increase of one standard deviation in fasting glucose or fasting insulin concentration.”

The authors also demonstrate that IR is a much better biomarker than fasting insulin:

 “The present meta-analyses showed that fasting glucose, fasting insulin and HOMA-IR were all associated with incident cardiovascular disease in individuals without diabetes. In a standardized meta-analysis we found that coronary heart disease risk increased with 46% for an increase of one standard deviation in HOMA-IR concentration compared to an increase of 21% for fasting glucose concentration and an increase of 4% for fasting insulin concentration.”

Insulin resistance causes fat expansion and vascular endothelial damage

An excellent paper published in Arteriosclerosis, Thrombosis, and Vascular Biology details how IR causes cardiovascular disease beyond abnormal glucose, lipids, hypertension, and its proinflammatory effects.

“…insulin’s action directly on vascular endothelium, atherosclerotic plaque macrophages, and in the heart, kidney, and retina has now been described, and impaired insulin signaling in these locations can alter progression of cardiovascular disease in the metabolic syndrome and affect development of microvascular complications.”

The authors describe how IR causes vascular inflammation and atherosclerosis:

“Insulin action directly on vascular endothelial cells affects endothelial function beyond regulating blood flow or capillary recruitment. Conditional knockout of the insulin receptor in endothelial cells causes a 2- to 3-fold increase in the atherosclerotic lesion size in apolipoprotein E–null mice…the increased atherogenesis in this model can be attributed to insulin action directly on endothelial cells rather than effects mediated through systemic parameters. The accelerated atherosclerosis in mice with endothelial cell insulin receptor knockout is preceded by a dramatic increase in leukocyte rolling and adhesion to endothelium and an increase in expression of vascular cell adhesion molecule-1…insulin signaling independent of NO is responsible for this effect.”

They state that IR promotes the necrotic core at the heart of vulnerable plaque:

Insulin resistance in macrophages, however, promotes formation of a necrotic core in atherosclerotic plaques by enhancing macrophage apoptosis. This is an important event in advanced atherosclerosis because exposure of the necrotic core to circulating blood in the event of plaque rupture can precipitate thrombosis, leading to unstable angina pectoris, transitory cerebral ischemia, stroke, or myocardial infarction.”

Regarding cardiomyocyte function…

“…it is likely that the changes in metabolic substrate inflexibility and increased mitochondrial production of oxidants caused by cardiomyocyte insulin resistance can contribute to development of heart failure in the metabolic syndrome.”

The authors conclude with important clinical points:

“Research on insulin receptor signaling using tissue–specific gene manipulation in mice as well as other methods has provided important insights into insulin action and revealed insulin effects in tissues that a decade or 2 ago were considered nonresponsive to insulin….insulin sensitizers would theoretically have better profiles of action if they improved insulin resistance in tissues regulating glucose and lipid metabolism, as well as in the endothelium and other vascular tissues where impaired insulin signaling is proatherosclerotic independent of metabolic effects. Second, insulin analogues should be carefully evaluated for deleterious effects on insulin signaling pathways which are not affected by insulin resistance, such as those pathways which promote dyslipidemia or increase vascular expression of endothelin-1.”

Insulin resistance promotes advanced plaque progression

A paper published in Cell Metabolism details additional mechanisms by which IR promotes atherosclerosis. The authors note that…

“…the pathophysiological processes involved in the initiation and progression of early lesions are quite different from those that cause the formation of clinically dangerous plaques,…advanced plaque progression is influenced primarily by processes that promote plaque necrosis and thinning of a collagenous “scar” overlying the lesion called the fibrous cap… and distinguishing the effects of insulin resistance and hyperglycemia on these processes is critically important.”

They echo other investigators who point out the crucial fact that insulin resistance does damage before glucose control is lost:

“There is ample clinical evidence that insulin resistance increases the risk for coronary artery disease (CAD) even in the absence of hyperglycemia. Insulin resistance syndromes can promote both atherogenesis and advanced plaque progression, and the mechanisms likely involve both systemic factors that promote these processes, particularly dyslipidemia but also hypertension and a proinflammatory state, as well as the effect of perturbed insulin signaling at the level of the intimal cells that participate in atherosclerosis, including endothelial cells, vascular smooth muscle cells, and macrophages.”

They highlight the critical clinical implication that insulin resistance also entails overstimulation of various tissues by insulin elevated in compensation for receptor resistance or by insulin-elevating medications:

“…“insulin resistance” can mean either defective insulin receptor signaling or, ironically, overstimulation of insulin receptor pathways caused by hyperinsulinemia.”

They also note the difference between ‘ordinary’ atherosclerosis and the lesions, vulnerable plaque, that actually cause heart attacks and ischemic strokes.

“Most importantly, the primary objective of this study was to address an entirely different question, namely, the effect of myeloid IR deficiency on advanced lesional macrophage apoptosis and plaque necrosis. Recall that most atherosclerotic lesions in humans do not cause acute coronary artery disease, because they undergo outward remodeling of the arterial wall, which preserves lumen patency, and do not undergo plaque rupture or erosion and thus do not trigger acute lumenal thrombosis. The small percentage of lesions that do cause acute vascular disease are distinguished by the presence of large areas of necrosis and thin fibrous caps, which promote plaque disruption, acute lumenal thrombosis, and tissue infarction. This concept is particularly important for the topic of this review, because advanced atherosclerotic lesions in diabetic subjects are characterized by large necrotic cores when compared with similarly sized lesions from nondiabetic individuals”

In their conclusion the authors state the role of insulin resistance over hyperglycemia:

“These studies have provided evidence that insulin resistance in macrophages and endothelial cells may play important roles in both atherogenesis and clinically relevant advanced plaque progression. Hyperglycemia, on the other hand, appears to primarily promote early stages of lesion formation…”

Insulin resistance inhibits nitric oxide synthase

An interesting paper published in the Italian journal Panminerva Medica further elucidates key mechanisms, including the damage by IR to nitric oxide regulation done by increasing asymmetric dimethylarginine, which inhibits nitric oxide synthase. The author includes this under the rubric ‘insulin resistance syndrome’.

“…the more insulin resistant an individual, the more insulin they must secrete in order to prevent the development of type 2 diabetes. However, the combination of insulin resistance and compensatory hyperinsulinemia increases the likelihood that an individual will be hypertensive, and have a dyslipidemia characterized by a high plasma triglyceride (TG) and low high-density lipoprotein cholesterol (HDL-C) concentration….Several other clinical syndromes are now known to be associated with insulin resistance and compensatory hyperinsulinemia. For example, polycystic ovary syndrome appears to be secondary to insulin resistance and compensatory hyperinsulinemia. More recently, studies have shown that the prevalence of insulin resistance/hyperinsulinemia is increased in patients with nonalcoholic fatty liver disease, and there are reports that certain forms of cancer are more likely to occur in insulin resistant/hyperinsulinemic persons. Finally, there is substantial evidence of an association between insulin resistance/hyperinsulinemia, and sleep disordered breathing. Given the rapid increase in the number of clinical syndromes and abnormalities associated with insulin resistance/hyperinsulinemia, it seems reasonable to suggest that the cluster of these changes related to the defect in insulin action be subsumed under the term of the insulin resistance syndrome.”

Specifically in regard to cardiovascular disease…

“…in addition to a high TG and a low HDL-C, the atherogenic lipoprotein profile in insulin resistant/hyperinsulinemic individuals also includes the appearance of smaller and denser low density lipoprotein particles, and the enhanced postprandial accumulation of remnant lipoproteins; changes identified as increasing risk of CVD. Elevated plasma concentrations of plasminogen activator inhibitor-1 (PAI-1) have been shown to be associated with increased CVD, and there is evidence of a significant relationship between PAI-1 and fibrinogen levels and both insulin resistance and hyperinsulinemia. Evidence is also accumulating that sympathetic nervous system (SNS) activity is increased in insulin resistant, hyperinsulinemic individuals, and, along with the salt sensitivity associated with insulin resistance/hyperinsulinemia, increases the likelihood that these individuals will develop essential hypertension.”


“The first step in the process of atherogenesis is the binding of mononuclear cells to the endothelium, and mononuclear cells isolated from insulin resistant/hyperinsulinemic individuals adhere with greater avidity. This process is modulated by adhesion molecules produced by endothelial cells, and there is a significant relationship between degree of insulin resistance and the plasma concentration of the several of these adhesion molecules. Further evidence of the relationship between insulin resistance and endothelial dysfunction is the finding that asymmetric dimethylarginine, an endogenous inhibitor of the enzyme nitric oxide synthase, is increased in insulin resistant/hyperinsulinemic individuals. Finally, plasma concentrations of several inflammatory markers are elevated in insulin resistant subjects.”


A paper published in Diabetes Metabolism Research and Reviews draws this point further.

“In recent years, it has become clear that insulin resistance and endothelial dysfunction play a central role in the pathogenesis of atherosclerosis. Much evidence supports the presence of insulin resistance as the fundamental pathophysiologic disturbance responsible for the cluster of metabolic and cardiovascular disorders, known collectively as the metabolic syndrome. Endothelial dysfunction is an important component of the metabolic or insulin resistance syndrome and this is demonstrated by inadequate vasodilation and/or paradoxical vasoconstriction in coronary and peripheral arteries in response to stimuli that release nitric oxide (NO). Deficiency of endothelial-derived NO is believed to be the primary defect that links insulin resistance and endothelial dysfunction. NO deficiency results from decreased synthesis and/or release, in combination with exaggerated consumption in tissues by high levels of reactive oxygen (ROS) and nitrogen (RNS) species, which are produced by cellular disturbances in glucose and lipid metabolism.”

And a vicious cycle ensues…

“Endothelial dysfunction contributes to impaired insulin action, by altering the transcapillary passage of insulin to target tissues. Reduced expansion of the capillary network, with attenuation of microcirculatory blood flow to metabolically active tissues, contributes to the impairment of insulin-stimulated glucose and lipid metabolism. This establishes a reverberating negative feedback cycle in which progressive endothelial dysfunction and disturbances in glucose and lipid metabolism develop secondary to the insulin resistance. Vascular damage, which results from lipid deposition and oxidative stress to the vessel wall, triggers an inflammatory reaction, and the release of chemoattractants and cytokines worsens the insulin resistance and endothelial dysfunction.”

In their conclusion the authors state:

“…endothelial dysfunction and insulin resistance commonly occur together and can be detected early in the pathogenesis of atherosclerosis. Insulin resistance can be inferred by the presence of a cluster of metabolic and cardiovascular abnormalities known collectively as the metabolic syndrome or by direct measurement of impaired insulin-stimulated glucose and lipid metabolism . Endothelial dysfunction can be documented by the demonstration of inadequate vasodilation and/or paradoxical vasoconstriction in coronary and peripheral arteries. Lack of endothelial-derived NO may provide the link between insulin resistance and endothelial dysfunction.”

Plea to clinicians

Many resources are available for practitioners to apply a functional medicine model of objectively targeted treatment to resuscitate insulin receptor function and address lifestyle issues, especially diet, for the management of type 2 diabetes that minimizes the use of agents that lower glucose by increasing insulin, and therefore insulin resistance. It is my sincere wish that not only endocrinologists, but all clinicians, recall the mechanisms by which medications that promote insulin resistance increase cardiovascular disease, and act accordingly to protect their patients.

Insulin resistance is a huge topic, and there are numerous posts here pertaining to IR an conditions as diverse as Alzheimer’s disease and breast cancer that can be viewed by using the search box. They include the earlier post on the correlation of IR with blood vessel damage leading to heart attack and stroke.

Gout: updates in diagnosis and treatment

RheumatologyGout diagnosis is rendered less invasive and more practical in the general clinical setting and treatment more sustainable by recent advances.

Diagnosis without joint fluid analysis

Analysis of synovial fluid for monosodium urate (MSU) crystals is the ‘gold standard’ for diagnosis of gout, but this is often not feasible in general practice. A study just published in the journal Rheumatology further validates an easy-to-use rule for diagnosing gout that can be relied upon in both the primary and secondary care settings. The authors state:

“The gold standard for diagnosing gout is the identification of MSU crystals in joint fluid. In secondary care, the facilities or expertise to analyse joint fluid are not always available and gout is diagnosed clinically. To improve the predictive value of the clinical diagnosis of gout in secondary care, a diagnostic rule developed in primary care could be helpful. The aim of this study was to validate this diagnostic rule in a secondary care population with the gold standard as reference test.”

Archives of Internal Medicine Vol 170 No. 16The study validating the use of this diagnostic rule in primary care was published a few years ago in Archives of Internal Medicine (now JAMA Internal Medicine). For the current study the authors examined data for 390 patients with monoarthritis according to the variables of their diagnostic rule: male sex, previous arthritis attack, onset <1 day, joint redness, involvement of the first MTP joint, hypertension or one or more cardiovascular disease, and serum uric acid >5.88 mg/dl. Fluid was aspirated from the affected joint and analyzed for the presence of MSU crystals.

“In 219 patients (56%) MSU crystals were found. The positive predictive value of a score of ≥8 points was 0.87, the negative predictive value of a score of ≤4 points was 0.95. The area under the receiver operating characteristic curve for the diagnostic rule was 0.86. The Hosmer–Lemeshow goodness-of-fit test showed that the difference between the expected and the observed probability was non-significant, indicating good agreement.”

In other words, a score of 8 points or higher has a positive predictive value for gout and 4 points or lower means a low probability, mandating consideration of other diagnoses. Note that serum uric acid over 5.88 mg/dl scores a point.

Handy Gout Calculator

Radboud University Medical CenterThe team of rheumatologists in the Netherlands who first developed the diagnostic rule and tested its validity in primary care have kindly made a convenient online gout calculator available to healthcare professionals.

[Practitioners in the US note that serum uric acid of 0.35mmol/L = 5.9 mg/dL.]

Treating Gout By Calming IL-1β Driven Inflammation

MSU crystals trigger the NALP3 inflammasome

Immunological ReviewsAll the pain and misery of gout are due to the immune system’s inflammatory reaction to monosodium urate crystals that have precipitated in tissues subject to high uric acid levels. A paper published in Immunological Reviews describes how MSU elicits production of the pro-inflammatory cytokine IL-1β (interleukin-1 beta) by triggering the NALP3 inflammasome (a multiprotein patten recognition receptor that activates the inflammatory cascade):

Uric acid crystals [monosodium urate (MSU)] have emerged as an important factor for both gouty arthritis and immune regulation. This simple crystalline structure appears to activate innate host defense mechanisms in multiple ways and triggers robust inflammation and immune activation… Upon contact with host cells, MSU induces a set of membrane events that trigger Syk and PI3K activation, phagocytosis, and cytokine production. Having entered the cell, MSU further triggers NALP3 inflammasome activation and induces the production of IL-1 beta, likely inducing a full spectrum of inflammation.”

The NALP3 inflammasome activates IL-1β

NatureA paper published in the esteemed journal Nature further describes this process that is common to other autoinflammatory diseases:

“The notion of autoinflammatory diseases delineates a heterogeneous group of pathologies characterized by spontaneous periodic inflammation and fever in the absence of infectious or autoimmune causes. Hereditary periodic fevers, systemic onset juvenile idiopathic arthritis, Still’s disease, Behçet’s disease and the metabolic disorders gout and pseudogout are examples of such inflammatory maladies. Increased production of the inflammatory cytokine IL-1β was recently identified as the cause of several autoinflammatory diseases, providing clear evidence for a pivotal role of this cytokine in triggering autoinflammation. IL-1β, also known as the endogenous pyrogen, is a highly inflammatory cytokine whose production is tightly controlled by at least three distinct steps….The middle step, processing of pro-IL-1β, involves the activation of a caspase-1-activating complex, the best characterized being the inflammasome.”

Uric acid crystals

Spiked rods of uric acid (MSU) crystals from a synovial fluid sample photographed under a microscope with polarized light.

Specifically in regard to gout and pseudogout:

“Development of the acute and chronic inflammatory responses known as gout and pseudogout are associated with the deposition of monosodium urate (MSU) or calcium pyrophosphate dihydrate (CPPD) crystals, respectively, in joints and periarticular tissues….Here we show that MSU and CPPD engage the caspase-1-activating NALP3 (also called cryopyrin) inflammasome, resulting in the production of active interleukin (IL)-1β and IL-18…These findings provide insight into the molecular processes underlying the inflammatory conditions of gout and pseudogout, and further support a pivotal role of the inflammasome in several autoinflammatory diseases.”

Treating gout by blocking IL-1β

Joint Bone SpineOf particular interest to practitioners using low dose cytokine therapy is the notion of treating gout and other autoinflammatory disorders by blocking IL-1β. This is suggested in a paper published in the journal Joint Bone Spine:

“The inflammasome is a proteolytic complex that regulates IL1β and IL-18 secretion in macrophages and dendritic cells. Its plays a vital role in the control of the inflammatory and cellular responses to infectious and danger signals and is an essential part of the innate immune system. Four different inflammasomes have been identified so far, and the NLRP3-inflammasome has been the best-studied in relation to human disease. Activation of the NLRP3-inflammasome by microcrystals, such as monosodium urate (MSU) and basic calcium phosphate (BCP) crystals, leads to IL1β release, which in turn triggers local inflammation. Dysfunction of the NLRP3-inflammasome due to mutations of the NLRP3 gene is the cause of the auto-inflammatory syndrome CAPS. The symptoms and signs of inflammation in both conditions respond to IL1 blockade. IL1 inhibitors have also been used successfully in other idiopathic inflammatory diseases, suggesting that dysregulated inflammasome activity contributes to the pathogenesis of multiple diseases, but the precise underlying mechanisms remain to be identified.”

Seminars in ImmunologyA paper recently published in Seminars in Immunology further stokes enthusiasm for the use of anti-IL1 low-dose cytokine therapy:

IL-1 is a master cytokine of local and systemic inflammation. With the availability of specific IL-1 targeting therapies, a broadening list of diseases has revealed the pathologic role of IL-1-mediated inflammation. Although IL-1, either IL-1α or IL-1β, was administered to patients in order to improve bone marrow function or increase host immune responses to cancer, these patients experienced unacceptable toxicity with fever, anorexia, myalgias, arthralgias, fatigue, gastrointestinal upset and sleep disturbances; frank hypotension occurred. Thus it was not unexpected that specific pharmacological blockade of IL-1 activity in inflammatory diseases would be beneficial. Monotherapy blocking IL-1 activity in a broad spectrum of inflammatory syndromes results in a rapid and sustained reduction in disease severity. In common conditions such as heart failure and gout arthritis, IL-1 blockade can be effective therapy…By specifically blocking IL-1, we have learned a great deal about the role of this cytokine in inflammation but equally important, reducing IL-1 activity has lifted the burden of disease for many patients.”

IL-1 blockade in other metabolic inflammatory disorders

Annual Review of MedicineBesides autoinflammatory disorders such as gout and pseudogout, the authors of a paper published in Annual Review of Medicine recognize the therapeutic potential for blocking IL-1 in inflammatory conditions including diabetes and coronary artery disease:

“Monogenic autoinflammatory syndromes present with excessive systemic inflammation including fever, rashes, arthritis, and organ-specific inflammation and are caused by defects in single genes encoding proteins that regulate innate inflammatory pathways….The discovery of the mutations that cause CAPS and DIRA led to clinical and basic research that uncovered the key role of IL-1 in an extended spectrum of immune dysregulatory conditions. NLRP3 encodes cryopyrin, an intracellular “molecular sensor” that forms a multimolecular platform, the NLRP3 inflammasome, which links “danger recognition” to the activation of the proinflammatory cytokine IL-1β…The fact that the accumulation of metabolic substrates such as monosodium urate, ceramide, cholesterol, and glucose can trigger the NLRP3 inflammasome connects metabolic stress to IL-1β-mediated inflammation and provides a rationale for therapeutically targeting IL-1 in prevalent diseases such as gout, diabetes mellitus, and coronary artery disease.”

Prediabetes also damages the heart

CirculationPrediabetes—elevation of blood glucose still within the ‘normal’ range—was recently reported to increase cancer risk; now a study just published in the journal Circulation demonstrates that prediabetes causes unfelt damage to the heart that substantially raises the risk of future coronary artery disease and heart failure regardless of cholesterol levels. The authors…

“…measured cardiac troponin T with a highly sensitive assay (hs-cTnT) at two time points, 6 years apart, among 9,331 participants…with no diabetes, prediabetes, or diabetes but without cardiovascular disease including silent MI by ECG. First, we examined incidence of elevated hs-cTnT (≥14 ng/L) at 6 years of follow-up. Second, we examined clinical outcomes during the subsequent ~14 years of follow-up among persons with and without incident elevated hs-cTnT. Cumulative probabilities of elevated hs-cTnT at 6 years among persons with no diabetes, prediabetes, and diabetes were 3.7%, 6.4%, and 10.8%, respectively. Compared to normoglycemic persons, the adjusted relative risks for incident elevated hs-cTnT were 1.38 for prediabetes and 2.46 for diabetes. Persons with diabetes and incident elevations in hs-cTnT were at a substantially higher risk of heart failure (HR 6.37), death (HR 4.36) and coronary heart disease (HR 3.84) compared to persons without diabetes and no incident elevation in hs-cTnT. “

DG NewsThat’s a 600% increase in risk of heart failure, 400% increase in death and 380% increase in coronary artery disease. Lead author Elizabeth Selvin, PhD of the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland was quoted in DG News:

It puts what we know about heart damage in diabetes on its head…It looks like diabetes may be slowly killing heart muscle in ways we had not thought of before.”

Regardless of cholesterol and without symptoms

Because the risk of cardiovascular disease associated with prediabetes and diabetes may have nothing to do with cholesterol:

Statin treatment may not be sufficient to prevent damage to the heart in people with diabetes.”

It’s important for clinicians and patients to keep mind that this kind of damages goes on ‘under the hood’ without apparent symptoms:

Even though there may be no symptoms yet, our research suggests there is microvascular damage being done to the heart which is leading to heart failure and even death.”

The authors of the study state in conclusion:

Prediabetes and diabetes were independently associated with development of subclinical myocardial damage, as assessed by hs-cTnT, and those persons with evidence of subclinical damage were at highest risk for clinical events. These results support a possible deleterious effect of hyperglycemia on the myocardium, possibly reflecting a microvascular etiology. “

Walking in the evening improves cardiovascular markers better than walking in the morning

Preventive MedicineWalking is beneficial any time of day, but an interesting study published recently in the journal Preventive Medicine demonstrated significantly more improvement in some key cardiovascular lipid and inflammatory markers by walking in the evening versus in the morning. The authors set out to:

“…examine the influence of walking at different times of day on lipids and inflammatory markers in sedentary patients with coronary artery disease (CAD).”

They measured lipids and inflammatory markers data 330 patients evenly divided into a control group, morning or evening walking group who were asked to walk 30 min/day or more on at least 5 days/week either in the morning or evening before and after 12 weeks. Walking in the evening proved to have significant advantages:

“Compared with baseline, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) were improved in all groups. Significances were shown in the changes of fibrinogen, high sensitivity C-reactive protein (hsCRP), white blood cell (WBC) count, TC, triglycerides, LDL-C, lipoprotein(a) between groups. The evening walking group had a larger decrease in fibrinogen, hsCRP, WBC count, and LDL-C than the other two groups.”

Note that all groups were rewarded with improvements in cholesterol levels, so better to walk anytime than not at all. These data, however, suggest their may be some additional benefit to walking in the evening when possible. Whether this is due to circadian effects on cortisol levels, more of a parasympathetic reaction, or other factors remains to be seen. The authors conclude:

“Our walking program successfully resulted in a favorable change in lipids and inflammatory markers. Patients in the evening walking group gained more benefits than those walking in the morning walking group.”

Thyroid in heart, metabolism, brain, kidney; vital importance of T3

The American Journal of MedicineNote: Scroll to the bottom of this post for an ‘executive summary.’

Thyroid disorders have widespread impact and although subclinical hypothyroidism and low triiodothyronine (T3) syndrome are common they are frequently overlooked in practice.

Thyroid function is very important for cardiovascular health. The authors of freshly published paper in The American Journal of Medicine remind readers:

Thyroid hormones modulate every component of the cardiovascular system necessary for normal cardiovascular development and function. When cardiovascular disease is present, thyroid function tests are characteristically indicated to determine if overt thyroid disorders or even subclinical dysfunction exists.”

The authors apparently rely on TSH as do many others, but in my opinion and as subsequent papers illustrate, this can result in many missed diagnoses…

“As hypothyroidism, hypertension and cardiovascular disease all increase with advancing age monitoring of TSH, the most sensitive test for hypothyroidism, is important in this expanding segment of our population. A better understanding of the impact of thyroid hormonal status on cardiovascular physiology will enable health care providers to make decisions regarding thyroid hormone evaluation and therapy in concert with evaluating and treating hypertension and cardiovascular disease.”

This includes the…

“…potential role of overt and subclinical hypothyroidism and hyperthyroidism in a variety of cardiovascular diseases.”


The Annals Of Thoracic SurgeryMore inspiration to  not overlook the widespread occurrence and clinical importance of low T3 (triiodothyronine, the ‘active’ thyroid hormone) is offered in a study just published in The Annals of Thoracic Surgery differentiates low triiodothyronine syndrome from gross hypothyroid in the context of coronary artery disease.

“There is strong clinical and experimental evidence that altered thyroid homeostasis negatively affects survival in cardiac patients, but a negative effect of the low triiodothyronine (T3) syndrome on the outcome of coronary artery bypass grafting (CABG) has not been demonstrated. This study was designed to evaluate the prognostic significance of low T3 syndrome in patients undergoing CABG.”

The authors evaluated 806 consecutive CABG patients for any effect of baseline free T3 (fT3) concentration and of preoperative low T3 syndrome (fT3 <2.23 pmol/L) on the risk of low cardiac output (CO) and death, finding a significant association:

“There were 19 (2.3%) deaths, and 64 (7.8%) patients experienced major complications. After univariate analysis, fT3, low T3, New York Heart Association class greater than II, low left ventricular ejection fraction (LVEF), and emergency were associated with low CO and hospital death…At multivariate analysis, only fT3, low T3, emergency, and LVEF were associated with low CO, and fT3 and LVEF were the only independent predictors of death.”

They summarize these striking results in their conclusion:

“Our study demonstrates that low T3 is a strong predictor of death and low CO in CABG patients. For this reason, the thyroid profile should be evaluated before CABG, and patients with low T3 should be considered at higher risk and treated accordingly.”


Acta CardiologicaIn this vein a very interesting paper was published in the journal Acta Cardiologica (Official Journal of the Belgian Society of Cardiology) that identifies low free (bioactive) T3 as a contributor to the development of cardiac dysfunction. The authors outline their intent:

“A low T3 syndrome was described in patients with heart failure (HF), and it appears to be associated with adverse outcome, representing an independent predictor of mortality. However, it is not known if low T3 levels contribute to the pathophysiology of HF. On the other hand, it has been seen that an elevation of brain natriuretic peptides (BNP and NT-proBNP) may represent a warning signal for future cardiovascular disease and may be an early marker of diastolic dysfunction. Therefore we tested the hypothesis that low levels of free-triiodothyronine (FT3) are sufficient to determine an increased concentration of the amino-terminal fragment of pro-brain natriuretic peptide (NT-proBNP), as the result of an initial and asymptomatic cardiac impairment.”

They evaluated thyroid function and measured NT-proBNP in 52 consecutive non-cardiac patients. Dividing them into a low T3 group (19 patients) and a normal T3 group (33 patients) they found…

“The median NT-proBNP concentration of patients with low T3 syndrome was significantly higher than in those with normal FT3 (370 vs. 120 pg/ml). There is a strong and inverse correlation between FT3 and Log NT-proBNP (R = -0.47); this relation persists in a multivariable regression analysis, after adjustment for other potentially confounding variables.”

The authors articulate the clinical significance in their conclusion:

“In absence of overt cardiovascular disease, patients with low T3 syndrome present an increased concentration of NT-proBNP. These data suggest that low FT3 levels may be a contributing factor for the development of cardiac dysfunction.”


European Journal of Clinical InvestigationThe same syndrome of subclinical low thyroid manifesting as low T3 applies to stroke as well according to a study published in the European Journal of Clinical Investigation. The authors state:

Low triiodothyronine (T3) has been associated with increased short-term mortality in intensive care unit patients and long-term mortality in patients with heart disease. The objective of this study was to investigate possible associations of thyroid hormone status with clinical outcome in patients admitted for acute stroke.”

Considering T3 values ≤ 78 ng dL (1·2 nmol L as ‘low T3’ and T4 values ≤ 4·66 µg dL (60 nmol L) were as ‘low T4′, they examined data for 737 consecutive patients with acute first ever stroke within 24 hours of onset. They measured total T3, thyroxin (T4) and thyroid-stimulating hormone (TSH) levels and evaluated the basic clinical characteristics, stroke risk factors, and brain imaging. Low thyroid (T3) turned out to be a significant predictor:

“Four hundred and seventeen (56%) patients had T3 values ≤ 78 ng dL−1 and 320 had normal T3 values. The 1-year mortality was 27·34% for low T3 and 19·37% for normal T3 cases. A smaller percentage of patients with low T3 values were independent at 1 year compared to those with normal T3 values [54·2% vs. 68·7%, odds ratio (OR) = 0·53]. Cox regression analysis revealed that increased age, haemorrhagic stroke, low Scandinavian Stroke Scale score, increased glucose and low T3 values (hazards ratio 0·69) were significant predictors of 1-year mortality.”

Clinicians should bear in mind the authors’ conclusion about low T3 thyroid syndrome and stroke:

“A high proportion of patients with acute stroke were found soon after the event with low T3 values. The low-T3 syndrome is an independent predictor of early and late survival in patients with acute stroke, and predicts handicap at 1 year.”


Saudi Medical JournalA valuable paper published in the Saudi Medical Journal offers evidence that low T3 is the strongest correlate of suboptimal thyroid function with metabolic syndrome and insulin resistance. The authors determined to…

“…determine the association between thyroid hormones, insulin resistance, and metabolic syndrome in euthyroid women.”

They examine forty-five women free of past medical conditions by estimating body fat and measuring fasting blood for total triiodothyronine (T3), total thyroxine (T4), thyroid-stimulating hormone (TSH), free triiodothyronine (FT3), lipids, insulin, and glucose. T3 turned out to be a much more significant indicator than T4:

“The mean age of the participants was 32.6 +/= 9.6 years with a body mass index (BMI) of 29.9 +/= 3.8 kg/m2. Evidence of homeostasis model assessment index for insulin resistance (HOMA-IR) more than 3 was seen in 34 (75%) and metabolic syndrome in 29 (64%) participants. Total T3 showed a positive correlation with triglycerides, low density lipoprotein- cholesterol (LDL-C), total cholesterol, insulin, HOMA-IR and negatively with body fat. Thyroid-stimulating hormone correlated positively with BMI, insulin, HOMA-IR, LDL-C and negatively with HDL-cholesterol (p<0.05). Free triiodothyronine correlated positively with waist circumference and T4 did not correlate with metabolic syndrome parameters.”

The authors conclude:

“Our preliminary data show an association between thyroid hormones and some components specific of the metabolic syndrome in euthyroid women. Total triiodothyronine and TSH correlated more with variables of metabolic syndrome than FT3 and T4.”


Endocrine JournalLow-grade systemic inflammation is a common denominator of aging and almost every chronic disease. It is, of course, a key factor in both type 2 diabetes and thyroid disorders. A study published recently in the Endocrine Journal (Japan Endocrine Society) demonstrates the association of type 2 diabetes with low T3 in the context of low-grade systemic inflammation:

“Previous reports highlight the role of systemic inflammation in the genesis of non-thyroidal illness syndrome and type 2 diabetes mellitus (T2DM). Our objective was to assess whether body mass index and the low-grade systemic inflammation would be associated with changes in thyroid hormone metabolism in patients with type 2 diabetes.”

They examined data for 104 subjects, half with type 2 diabetes and half comprised a control group who were paired by age, gender and body mass index. They measured total (T) and free (F) thyroxine (T4) and triiodothyronine (T3), reverse T3 (rT3), the ratios FT3/rT3, FT3/FT4 and FT4/rT3, and obtained additional data on diabetes duration and complications, body mass index, waist circumference, hypertension, HbA1c, and high sensitivity C-reactive protein. T3 stands out here as well:

“Patients with DM presented lower levels of TT4, TT3 and FT3 and higher of FT4, waist circumference and C-reactive protein. Body mass index was inversely correlated with FT4 and TT3. C-reactive protein was positively correlated with rT3 and inversely with FT4/rT3 and FT3/rT3. Body mass index was an independent predictor for FT4 and TT3 levels. Inflammation predicted the FT4/rT3 ratio. C-reactive protein and body mass index were independent predictors for rT3.”

Clinical note: this implies that thyroid assessment is incomplete if it doesn’t include at least free and total T3 and T4 (along with TSH). The authors conclude with a statement of great significance because it is so common to encounter in clinical practice:

“In conclusion, type 2 diabetes was associated with a low T3 state. Body mass index and the low-grade systemic inflammation are related to the non-thyroidal illness syndrome in these patients, possibly by altering the activity of peripheral deiodinases.”

I find low-grade systemic inflammation impairment of the activity of deiodinase enzymes to convert T4 into the metabolically active T3 regularly in my patient population.


Journal of Clinical Endocrinology & MetabolismMore complete assessment of seemingly euthyroid (‘normal’ thyroid) patients is often dismissed with the  test data limited meagerly to TSH and total T4 levels, a practical flaw that likely fails to uncover many diagnoses. In a study published in the Journal of Clinical Endocrinology & Metabolism, the authors demonstrate that ‘low normal’ free T4 correlated significantly with metabolic syndrome and cardiovascular risk factors. The authors state:

“Thyroid disease and the metabolic syndrome are both associated with cardiovascular disease…The aim of this study was to explore the hypothesis that thyroid function, in euthyroid subjects, is associated with components of the metabolic syndrome, including serum lipid concentrations and insulin resistance.”

They assessed data for 2703 euthyroid adult subjects that included homeostasis model assessment for insulin resistance (HOMA-IR and usual criteria for metabolic syndrome:

“After adjustment for age and sex, free T4 (FT4) was significantly associated with total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglycerides. Both FT4 and TSH were significantly associated with HOMA-IR. Median HOMA-IR increased from 1.42 in the highest tertile of FT4 to 1.66 in the lowest tertile of FT4. FT4 was significantly related to four of five components of the metabolic syndrome (abdominal obesity, triglycerides, high-density lipoprotein cholesterol, and blood pressure), independent of insulin resistance.”

Clinical note: so-called euthyroid = ‘normal’ thyroid or ‘subclinical hypothyroid’ must not be overlooked in case management of metabolic syndrome and cardiovascular risk. The authors conclude by asserting:

“We have demonstrated an association between FT4 levels within the normal reference range and lipids, in accordance with the earlier observed association between (sub)clinical hypothyroidism and hyperlipidemia. Moreover, low normal FT4 levels were significantly associated with increased insulin resistance. These findings are consistent with an increased cardiovascular risk in subjects with low normal thyroid function.”


Metabolic Syndrome and Related DisordersMore on T3 and metabolic syndrome was presented in a study published in the journal Metabolic Syndrome and Related Disorders (yes, there is a journal by that title) in which the authors examined date for 211 patients with a mean age of about 40 years who had a body mass index (BMI) >30 kg/m(2) without any other hormonal disorder related to obesity. Measurements included fasting blood glucose (FBG), insulin, insulin resistance (HOMA-IR),total cholesterol, triglycerides, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), thyroid-stimulating hormone (TSH), total triiodothyronine (TT3), total thyroxine (TT4), free T3 (FT3), and free T4 (FT4). They used TSH cutoff value of 2.5 mU/L. Sure enough T3 stood out:

Metabolic syndrome positive patients had significantly higher FBG, triglycerides, FT4, systolic (SBP) and diastolic blood pressure (DBP), and statistically lower HDL-C and FT3/FT4 ratio than metabolic syndrome negative patients. TSH decreased with age and was not related with any metabolic syndrome parameters. The FT3/FT4 ratio negatively correlated with FBG, triglycerides, SBP, and DBP; TT3 positively correlated with HOMA-IR, FBG, and waist circumference.”

In other words, as free T3 went down in relation to free T4 fasting blood glucose, triglycerides, and both systolic and diastolic blood pressure went up. And as total T3 went down insulin resistance, fasting blood glucose and waist circumference went up. The authors conclude:

“”Metabolic syndrome parameters (except HDL) correlated with TT3, FT4, and the FT3/FT4 ratio. FT4 levels were associated with obesity and metabolic syndrome independently of insulin resistance, whereas TT3 levels were associated with both insulin resistance and metabolic syndrome. This relationship can be explained by compensatory effects of TT3, and probably FT4, on energy expenditure and thermogenesis in obese people.”


Journal of Clinical InvestigationAt the crux of the matter is the manner in which low grade chronic inflammation impairs conversion of the relatively inactive T4 thyroid hormone to the active T3. The authors of a very valuable paper published in The Journal of Clinical Investigation shed light on an important mechanism by describing the role of the pro-inflammatory cytokine IL-6.

Nonthyroidal illness syndrome (NTIS) is a state of low serum 3,5,3′ triiodothyronine (T₃) that occurs in chronically ill patients; the degree of reduction in T₃ is associated with overall prognosis and survival. Iodthyronine deiodinases are enzymes that catalyze iodine removal from thyroid hormones; type I and II deiodinase (D1 and D2, respectively) convert the prohormone thyroxine T₄ to active T₃, whereas the type III enzyme (D3) inactivates T₄ and T₃. Increased production of cytokines, including IL-6, is a hallmark of the acute phase of NTIS.”

They investigated this by measuring the effect of IL-6 the different types deiodinase activities in human cell lines. (Recall that deiodinase enzyme activity is required to convert T4 to T3.) Their results reveal not only the role of pro-inflammatory IL-6, but implicate glutathione (GSH) as a likely key factor:

Active T₃ generation by D1 and D2 in intact cells was suppressed by IL-6, despite an increase in sonicate deiodinases (and mRNAs). N-acetyl-cysteine (NAC), an antioxidant that restores intracellular glutathione (GSH) concentrations, prevented the IL-6-induced inhibitory effect on D1- and D2-mediated T₃ production, which suggests that IL-6 might function by depleting an intracellular thiol cofactor, perhaps GSH. In contrast, IL-6 stimulated endogenous D3-mediated inactivation of T₃.”

The authors’ conclusion contains comments of great clinical significance:

“In conclusion, our findings demonstrated that pathophysiologically relevant concentrations of IL-6 reduce D1 and D2 function and increase that of D3, providing a single mechanistic explanation for the decreased serum T3 and increased rT3 observed in the acute phase of NTIS. The decrease in D1 will both reduce plasma T3 production and impair rT3 deiodination, while the decrease in D2 will supplement this by impairing intracellular T4-to-T3 conversion. On the other hand, the increased D3 protein, which has its function preserved by its more ready access to GSH (or other extracellular reducing agents), will further decrease plasma T3 and increase the production of rT3 from T4. The general increase in the cellular deiodinase proteins is caused by a combination of IL-6–induced ROS (also found with H2O2) and specific activation of JAK/STAT pathways by this cytokine.”

In a larger context…

“Although other factors in sick patients may also contribute to NTIS, these observations and unifying hypothesis represent a major step forward in unraveling this longstanding enigma, leading to what we believe to be a previously unrecognized combinatorial pathway that may be viewed largely as a general response to oxidative stress. Our results therefore suggest that rather than a protective or a maladaptive process, the changes in plasma T4, T3, and rT3 are a consequence of cellular stress. Whether antioxidants, such as NAC, could be beneficial as an adjuvant therapy together with other therapeutic measures in critically ill patients remains to be evaluated.”


Nephrology Dialysis TransplantationFurther insight into the nature of the low T3 in thyroid dysregulation associated with chronic disease is offered in a study published in the journal Nephrology Dialysis Transplantation on chronic kidney diseae (CKD) and low T3. These authors observe:

“The evaluation of thyroid function in systemic illness remains complex because the changes occur at all levels of the hypothalamic-pituitary-thyroid axis. During illness, a decrease in triiodothyronine (T3) and pulsatile thyroid-stimulating hormone (TSH) release and increases in reverse T3 occur. This constellation of findings is termed the low T3 syndrome, the euthyroid sick syndrome or non-thyroid illness. Low T3 syndrome is the most common manifestation in non-thyroid illness and this phenomenon has been believed to be due to inhibition of 5′-deiodinase, which is a catalyzing enzyme for production of T3 from circulating T4. To date, a variety of alterations in thyroid hormone levels and metabolism have been reported in patients with chronic renal failure and low T3 has been consistently found to be the most common disturbance.”

Of widespread importance:

“Several lines of evidence suggested that low T3 was an independent predictor of survival in various illness states. Furthermore, the recent data proposed that biomarkers of inflammation were associated with low T3 levels in haemodialysis and peritoneal dialysis patients and thyroid dysfunction might be implicated in the pathogenetic pathway which link microinflammation to survival in dialysis patients.”

They determined to see if low T3 correlated to chronic kidney disease prior to the stage of dialysis:

“However, there are no data about the prevalence of low T3 in persons with chronic kidney disease (CKD) who do not require maintenance dialysis. We hypothesized that the prevalence of low T3 would be increased according to the increase of a CKD stage. This study was performed to explore the prevalence in each stage of CKD and relationship with eGFR.”

Their data on 2284 subjects with normal serum TSH and not taking thyroid hormones confirmed their hypothesis, leading to the conclusion:

“This study showed that low T3 syndrome was highly prevalent in CKD and was a remarkable finding in early CKD. Furthermore, serum T3 levels were associated with severity of CKD even in the normal TSH level.”


Iranian Journal of Kidney DiseasesAlong these lines a study showing that low T3 in various conditions including CKD is linked to systemic low grade inflammation reflected in altered cytokines was published in the Iranian Journal of Kidney Diseases. The authors evaluated the interleukins (IL) IL-6 and IL-10 and euthyroid sick syndrome (ESS) in patients with nonthyroidal illnesses (NTI) including chronic kidney disease (CKD), congestive heart failure (CHF), or acute myocardial infarction (MI) while measuring serum levels of IL-6 and IL-10, thyroid stimulating hormone (TSH), total T4, and T3:

“In the 60 patients with NTI, we detected a significantly lower T3 and T4 levels compared to controls, while TSH level was within the reference range. Also, IL-6 level was substantially higher than that in controls and correlated with T3 and T4. Similarly was IL-10 level that correlated with T3, but not with T4. The ILs correlated positively with each other. Only IL-6 was a predictor of low T3. The proportion of patients with subnormal T3, T4, and TSH levels was highest in those with MI along with greatest IL-6 and IL-10 levels compared to patients with CHF and CKD. Patients with CKD showed the least disturbance in IL-6 and IL-10 despite the lower levels of T3, T4, and TSH in a higher proportion of them compared to patients with CHF.”

Their discussion of these results contains some key points for clinicians:

“In the current study, we observed a considerably lower serum T3 and total T4 concentrations, signifying thyroid dysfunction, in patients with variable NTIs, while serum TSH showed a mean value that was not significantly different from that in the healthy controls…In this study, we detected a substantially high level of the pro-inflammatory cytokine, IL-6, in patients with NTI, supporting its possible role as an endocrine cytokine with a regulatory effect on many endocrine systems including the thyroid gland.”

Here is something readers who test cytokines may have seen too that illustrates a fundamental principal in case management and disease progression: suppression of receptors due to chronically high levels of signaling agents (in this case anti-inflammatory IL-10):

We also detected a considerably high level of the anti-inflammatory cytokine, IL-10 in the patients with NTI.Therefore, within the cytokine network, activation of pro-inflammatory mediators such as IL-6 is followed by increased production of endogenous inhibitory molecules including the antagonistic cytokine IL-10 in an attempt to suppress release of pro-inflammatory cytokines. This dimorphic response may be related to macrophages resistance to the suppressive effect of IL-10 as a result of down-regulation of the expression of soluble IL-10 receptors. The high IL-10 levels was hoped for to minimize the deleterious effect of the raised IL-6. Taniguchi and colleagues highlighted this potential protective effect of IL-10 in their 25 patients with systemic inflammatory states…In this study, the suppressed thyroid hormones were inversely associated with serum IL-6 elevations.”

There was a particularly strong association with heart attacks (MI), consonant with the degree of thyroid dysfunction tracking the severity of non-thyroidal illness:

“We observed a highest level of IL-6 along with lowest measurements of both serum T3 and serum T4 in the patients with MI, while the least changes were noticed in patients with chronic illness exemplified by CHF. This is in accordance with the hypothesis that the magnitude of thyroid hormones’ alteration parallels the severity of the associated NTI.”


Clinical note: It is very important for practitioners to bear in mind that thyroid effect, in addition to thyroid hormone production and conversion, encompasses thyroid hormone transporters and receptors. The felt metabolic and brain effects of thyroid activation depends on all of these. Failing to take them into consideration is a common reason why ‘subclinical hypothyroidism’, NTIS (nonthyroidal illness syndrome) or ESS (euthyroid sick syndrome) is often overlooked.

Journal of Molecular EndocrinologyA paper published in the Journal of Molecular Endocrinology sheds light on the role of MCT8, MCT10, organic anion transporting polypeptides (OATP) transporters:

“Thyroid hormone is a pleiotropic hormone with widespread biological actions. The follicular cells of the thyroid gland produce predominantly thyroxine (T4), but it is mainly 3,3′,5-tri-iodothyronine (T3) that binds to the nuclear thyroid hormone receptor. The biological activity of T3 is therefore largely determined by the intracellular T3 concentration which is dependent on a) the circulating T3 concentration; b) the transport of thyroid hormone across the cell membrane; and c) the presence of iodothyronine deiodinases, which activate or inactivate thyroid hormone. To date, three deiodinases have been characterized as homologous selenoproteins. Both D1 and D2 converts T4 to T3, whereas D3 catalyzes the degradation of T4 to reverse T3 (rT3) and of T3 to 3,3′-T2.”

The enzymes that convert T4 to T3 have their active portions inside the cell, and transporters are required to get T4 through the cell membrane into the cytoplasm where the action happens:

“The deiodinases are membrane proteins with their active sites located in the cytoplasm. Therefore, transport across the cell membrane is essential for thyroid hormone action and metabolism. Based on the lipophilic structure of thyroid hormones, it is long thought that thyroid hormone enters the cell through passive diffusion. However, it has become increasingly clear that there are specific thyroid hormone transporters, and that the activity of these transporters in part determines the intracellular thyroid hormone concentration.”

Thyroid hormone transporters MCT8 and MCT10Transporters MCT8, MCT10 and OATP have been the most studied:

“To date, several transporters with high affinity for thyroid hormone, but with different tissue distributions and ligand affinities have been identified. This review will focus on the molecular aspects of the monocarboxylate transporter 8 (MCT8) and MCT10, and several members of the organic anion transporting polypeptide (OATP) family…both MCT8 and MCT10 increase the intracellular availability of iodothyronines, as evidenced by the marked increase in their intracellular deiodination by co-transfected deiodinases. However, both MCT8 and MCT10 facilitate not only the cellular uptake but also the efflux of iodothyronines.”

In other words, they get necessary thyroid stuff both into and out of the cell. These transporters are subject to genetic variation of course, and some mutations in the MCT8 gene can cause severe psychomotor retardation:

Mutations in the MCT8 gene cause a syndrome of severe psychomotor retardation and high serum T3 levels in affected male patients, known as the Allan–Herndon–Dudley syndrome. The neurological deficits are probably explained by an impeded uptake of T3 in MCT8-expressing central neurons and, hence, an impaired brain development. This has been reviewed in detail elsewhere. Since mutations in the MCT8 gene have such profound effects, the question arises whether small changes in the MCT8 gene may affect transport activity as well.”

Such as depression, etc. The implication is that much milder disruption of MCT8 transporter function can significantly diminish metabolism in the brain that impairs cognition and mood. The authors conclude their lengthy paper detailing the action of other transports with comments of great clinical significance:

“…it has become clear that thyroid hormone requires active transport across cell membrane to carry out its biological functions…It is surprising that few studies have been published investigating the association of polymorphisms in these transporters with serum thyroid parameters or thyroid hormone-related endpoints, especially since polymorphism studies have yielded new insights into the role of thyroid hormone in several processes in the human body. For instance, a genome-wide linkage scan identified the type 2 deiodinase as a susceptibility locus for osteoarthritis. In addition, genetic variation seems to play a role in psychological well-being…”


Thyroid ResearchThe authors of a paper published in the journal Thyroid Research chime in with an expansion of these observations:

Thyroid hormones are of crucial importance for the functioning of nearly every organ. Remarkably, disturbances of thyroid hormone synthesis and function are among the most common endocrine disorders affecting approximately one third of the working German population. Over the last ten years our understanding of biosynthesis and functioning of these hormones has increased tremendously. This includes the identification of proteins involved in thyroid hormone biosynthesis like Thox2 and Dehal where mutations in these genes are responsible for certain degrees of hypothyroidism. One of the most important findings was the identification of a specific transporter for triiodothyronine (T3), the monocarboxylate transporter 8 (MCT8) responsible for directed transport of T3 into target cells and for export of thyroid hormones out of thyroid epithelial cells.”

They remind of the role of thyroid dysregulation in depression and dementia:

“Disturbed TH action is linked with major health problems especially in critical life phases such as development, disease or ageing. Thus, lack of TH action in the adult brain causes impaired neuro-cognitive function and psychiatric states such as severe depression and dementia. Not only hypothyroidism but also hyperthyroidism affects the CNS and frequently results in agitation, increased irritability and dysregulation of body temperature.”

Cardiovascular disease can also have a thyroid component:

“There is ample epidemiological evidence that both, hyper- and hypothyroidism confer an increased risk for cardiovascular morbidity(e.g. arrhythmia, heart failure and stroke) and mortality.”

Interestingly in regard to obesity:

“Besides the classic hormones T4 and T3 new data demonstrate that the rare thyroid hormone metabolite 3,5-T2 is effective in the prevention of high fat diet-induced adiposity and prevents hepatic steatosis, however, without exerting the severe side effects on the cardiac system that have been observed with T3-based treatments. The vital importance of thyroid hormones for regulation of thermogenesis and for maintenance of the homeostasis of the mitochondrial energy metabolism has long been established. However, the functional interactions between the activities of uncoupling proteins (UCP) which are triggered by T3 and catecholamines affecting brown adipose tissue (BAT) as well as skeletal muscle of the adult, provide new possibilities for therapeutic intervention in obesity that have only recently become apparent.”

Old and new concepts of thyroid hormone actionThey summarize a ‘bird’s-eye’ view of hormone physiology:

“Thus in the present concept of thyroid hormone action, the cellular thyroid hormone status is defined by thyroid hormone transporters, thyroid hormone membrane receptors, thyroid hormone molecules and TAM mediated actions.

There is no question that aging increases the tendency to subclinical hypothyroid conditions:

“Epidemiology has shown unequivocally that with age the ratio of subclinical to clinically manifest thyroid disorders increases, thus thyroid disorders are a disease of the ageing population. In light of the demographic changes of our societies, improvements of human health care systems should not be limited to better management of only cardiovascular disorders, cancer, and neurodegenerative diseases. We believe that modern and future-oriented health politics and policy making institutions need to take an endocrine organ into account that has been known for decades, but is still not fully “revealed”, the thyroid gland.”


Journal of EndocrinologyAppreciation of the weighty influence of the MCT8 transporter is enhanced by recognition of its role in the global neurological impairment of intrauterine growth restriction (IUGR) as described in a study published in the Journal of Endocrinology:

Intrauterine growth restriction (IUGR) describes the failure of a fetus to attain its genetically determined growth potential, with the most common underlying etiology being uteroplacental failure associated with abnormal placental development. IUGR is often characterized by continued head and brain growth at the expense of other less vital organs resulting in an elevated brain:liver weight ratio postnatally. IUGR complicates 5–10% of pregnancies and is associated with increased perinatal mortality. Survivors demonstrate an increased prevalence of cognitive impairment compared with babies born appropriately grown for gestational age.”

They measured changes in cortical MCT8 expression with IUGR by immunohistochemistry performed on brain sections obtained from appropriately grown for gestational age (AGA) human fetuses and MCT8 immunostaining in the occipital cortex of stillborn IUGR human fetuses which was compared with that in the occipital cortex of gestationally matched AGA fetuses:

“When complicated by IUGR, fetuses showed a significant fivefold reduction in the percentage area of cortical plate immunostained for MCT8 compared with AGA fetuses… Cortical MCT8 expression was negatively correlated with the severity of IUGR indicated by the brain:liver weight ratios at post-mortem. Our results support the hypothesis that a reduction in MCT8 expression in the IUGR fetal brain could further compromise TH-dependent brain development…This study is the first to demonstrate significantly reduced cortical MCT8 expression within the developing CNS of human fetuses stillborn with severe IUGR. Our results suggest that altered TH transporter activity in cerebral neurons could be a contributory factor to the pathophysiology of neurodevelopmental impairment associated with IUGR.”


Molecular and Cellular EndocrinologyAs described in an earlier post (Depression, aging and brain inflammation: indications for sustainable treatment) there is evidence that the global driving factor of biological aging is inflammation in the hypothalamus, practitioners doing case management of thyroid conditions should know the importance of thyroid hormone feedback in the hypothalamus and pituitary as described in a paper published in Molecular and Cellular Endocrinology:

“A major change in thyroid setpoint regulation occurs in various clinical conditions such as critical illness and psychiatric disorders. As a first step towards identifying determinants of these setpoint changes, we have studied the distribution and expression of thyroid hormone receptor (TR) isoforms, type 2 and type 3 deiodinase (D2 and D3), and the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) in the human hypothalamus and anterior pituitary.”

Their examination of these agents through immunoreactivity and immunostaining revealed important activity of hypothalamic glial cells:

“These findings suggest that the prohormone thyroxine (T4) is taken up in hypothalamic glial cells that convert T4 into the biologically active triiodothyronine (T3) via the enzyme D2, and that T3 is subsequently transported to TRH producing neurons in the PVN. In these neurons, T3 may either bind to TRs or be metabolized into inactive iodothyronines by D3. By inference, local changes in thyroid hormone metabolism resulting from altered hypothalamic deiodinase or MCT8 expression may underlie the decrease in TRH mRNA reported earlier in the PVN of patients with critical illness and depression.”

The pituitary, of course, also comes into play:

“In the anterior pituitary, D2 and MCT8 immunoreactivity occurred exclusively in folliculostellate (FS) cells. Both TR and D3 immunoreactivity was observed in gonadotropes and to a lesser extent in thyrotropes and other hormone producing cell types.”

The authors summarize their results:

“Based upon these neuroanatomical findings, we propose a novel model for central thyroid hormone feedback in humans, with a pivotal role for hypothalamic glial cells and pituitary FS cells in processing and activation of T4. Production and action of T3 appear to occur in separate cell types of the human hypothalamus and anterior pituitary.”


Pediatric Endocrinology ReviewsHormone receptors are a critical link in the signaling chain for thyroid as for other hormones and neurotransmitters. Receptor function can be impaired by elevated hormone levels, genetic mutation and chronic inflammation. A paper published in Pediatric Endocrinology Reviews serves as a reminder to consider thyroid hormone receptor function in case management:

The important physiological actions of the thyroid hormones are mediated by binding to nuclear thyroid hormone receptors (TRs), encoded by two genes TRalpha and TRbeta. These receptors act as hormone-dependent transcription factors by binding to DNA motifs located in the regulatory regions of target genes…”

Receptor resistance to thyroid hormones can cause a hypothyroid state in the presence of normal TSH and thyroid hormone levels:

“TRbeta gene mutations cause resistance to thyroid hormones (RTH), characterized by inappropriately high thyroid-stimulating hormone (TSH) levels due to lack of feedback inhibition of thyroid hormones on the hypothalamus and pituitary gland, and to reduced sensitivity of other TRbeta target tissues to thyroid hormones. Very recently, patients heterozygous for TRalpha mutations have been identified. These patients exhibit clinical symptoms of hypothyroidism in TRalpha target tissues such as intestine or heart and near normal circulating TSH and thyroid hormone levels.”


Nephrology Dialysis TransplantationChronic low-grade inflammation, also termed micro-inflammation, is an almost universal ‘fact of life’ in chronic disorders and aging. Its link to peripheral thyroid resistance and low T3 is seen in high magnification in Nephrology Dialysis Transplantation in which the authors observe its role in continuous ambulatory peritoneal dialysis (CAPD) patients with end-stage renal disease (ESRD):

Low T3 is a frequent alteration in patients with ESRD. This derangement has been recently linked to inflammation in haemodialysis patients. Whether this association holds true in peritoneal dialysis patients has not been studied…We investigated the relationship between low-grade inflammation [IL-6, C-reactive protein (CRP) and serum albumin levels] and free tri-iodothyronine (fT3) in a cohort of 41 CAPD patients without heart failure and inter-current illnesses.”


They found multiple correlations, including low free T3 as a predictor of mortality:

“CAPD patients had lower fT3 levels than healthy subjects of similar age. Free T3 levels were directly related to those of serum albumin and inversely to IL-6 and CRP. Age, haemoglobin levels and diastolic blood pressure were also related to fT3. In multiple regression models adjusting for all variables related to fT3, CRP and albumin were retained as independent correlates of fT3…Plasma fT3 levels were lower in patients who died compared with survivors. In Cox analyses, fT3 was a significant predictor of mortality independent of the main traditional as well as non-traditional risk factors.”


The association of micro-inflammation and low free T3 noted by the authors likely applies to numerous other conditions:

“The relationship between fT3, CRP and serum albumin suggests that inflammation–malnutrition might be involved in the low T3 syndrome in CAPD patients. Thyroid dysfunction might be implicated in the pathogenic pathway which links micro-inflammation to survival in PD patients.”


Journal of Endocrinological InvestigationClinicians should also keep in mind that low T3 can be the only thyroid abnormality contributing to psychiatric depression. A paper published in the Journal of Endocrinological Investigation focuses on the link between low T3 syndrome and depression.

“In euthyroid sick syndrome [non-thyroidal illness (NTI)], a number of investigators have described TSH and serum thyroid hormone abnormalities, low T3, low T3 and T4, increased T4, low TSH, etc. Those cases of NTI where there is only T3 decrease [and normal serum T4, free T4 (FT4), and TSH levels] are specifically referred to as low T3 syndrome. However, the information in regard to low T3 syndrome in psychiatric subjects who are clinically euthyroid and do not have any other systemic illness is scanty. In our facility, since thyroid function is routinely assessed in psychiatric patients at admission, this provided the opportunity to study low T3 syndrome in a large group of psychiatric patients.”

The authors found low T3 syndrome in a substantial percentage of depressed patients:

Out of 250 subjects with major psychiatric depression, 6.4% exhibited low T3 syndrome (mean serum T3 concentration 0.94 nmol/l vs normal mean serum concentration of 1.77 nmol/l). The low T3 levels could not be ascribed to malnutrition or any other illness and the metabolic parameters were all normal…The depression might constitute an illness having the same relation to low T3 as found in the low T3 syndrome previously described in euthyroid sick subjects. The present findings, besides describing low T3 syndrome in psychiatric patients without systemic illnesses, suggest the possibility of subgrouping in clinical psychiatric depression which may have a broader clinical significance.”


Minerva EndocrinologicaA point of premiere clinical importance is that supplemental T3 can be the treatment of choice in depression with hypothyroid as asserted by the authors of an excellent paper published in Minerva Endocrinologica:

Hypothyroidism has been linked to depression as there is irrefutable evidence that it triggers affective disease and psychic disorders. Depressive patients have a higher frequency of hypothyroidism and patients with hypothyroidism have a higher occurrence of depressive syndrome. Hypothyroidism exhibits considerable alterations in blood flow and glucose metabolism in the brain. Furthermore, patients with major depression may have structural abnormalities of the hippocampus that can affect memory performance. Thyroid peroxidase antibodies have, moreover, been positively associated with trait markers of depression.”

Remember that more than 90% of hypothyroid in developed countries is autoimmune thyroiditis (Hashimoto’s disease) with the presence of thyroid peroxidase antibodies, a frequent finding on laboratory tests that can be very significant even at ‘predictive’ (low) levels. Furthermore…

Depressive symptomatology is variable and is influenced by susceptibility and the degree, though not always, of thyroid failure. In addition, glucose homeostasis and rapid weight loss have been associated to thyroid hormones and increased depressive symptoms. Thyroxine treatment in patients older than 65 years does not improve cognition. In contrast, T3 administration is the therapy of choice in patients with resistance to antidepressive drugs, and especially to SSIR. Genetic variants of thyroid hormone transporters or of deiodinases I and II may predispose to depression and, therefore, a personalized approach should be implemented.”


BMC CancerAlso of great interest is the finding that treatment of subclinical hypothyroid/non-thyroidal illness syndrome (NTIS) with T3 can improve the response to chemotherapy in breast cancer as reported in a study published in BMC Cancer:

Thyroid hormones have been shown to regulate breast cancer cells growth, the absence or reduction of thyroid hormones in cells could provoke a proliferation arrest in G0-G1 or weak mitochondrial activity, which makes cells insensitive to therapies for cancers through transforming into low metabolism status. This biological phenomenon may help explain why treatment efficacy and prognosis vary among breast cancer patients having hypothyroid, hyperthyroid and normal function. Nevertheless, the abnormal thyroid function in breast cancer patients has been considered being mainly caused by thyroid diseases, few studied influence of chemotherapy on thyroid function and whether its alteration during chemotherapy can influence the response to chemotherapy is still unclear. So, we aimed to find the alterations of thyroid function and non-thyroidal illness syndrome (NTIS) prevalence during chemotherapy in breast cancer patients, and investigate the influence of thyroid hormones on chemotherapeutic efficacy.”

The authors examined thyroid hormone levels and NTIS prevalence at initial diagnosis of breast cancer and during chemotherapy in 685 patients (369 with breast cancer, 316 with breast benign lesions). They also measured the influence of thyroid hormones on chemotherapeutic efficacy by the chemosensitization test and compared chemotherapeutic efficacy between breast cancer cells with chemotherapeutics plus triiodothyronine (T3) versus chemotherapeutics only. A distinct benefit from treatment by T3 emerged from their data:

“In breast cancer, NTIS prevalence at the initial diagnosis was higher and increased during chemotherapy, but declined before the next chemotherapeutic course. Thyroid hormones decreased significantly during chemotherapy. T3 can enhance the chemosensitivity of MCF-7 to 5-Fu and taxol, with progression from G0-G1 phase to S phase. The similar chemosensitization role of T3 were found in MDA-MB-231. We compared chemotherapeutic efficacy among groups with different usage modes of T3, finding pretreatment with lower dose of T3, using higher dose of T3 together with 5-Fu or during chemotherapy with 5-Fu were all available to achieve chemosensitization, but pretreatment with lower dose of T3 until the end of chemotherapy may be a safer and more efficient therapy.”

Their conclusions are highly important for breast cancer management:

“Taken together, thyroid hormones decreasing during chemotherapy was found in lots of breast cancer patients. On the other hand, thyroid hormones can enhance the chemotherapeutic efficacy through gathering tumor cells in actively proliferating stage, which may provide a new adjuvant therapy for breast cancer in future, especially for those have hypothyroidism during chemotherapy.”


Clinical Endocrinology & MetabolismThyroid function tests may be often oversimplified to the detriment of the patient. As studies shown above and many more have shown, low T3 can be a complicating factor in a wide range of disorders. Dysregulation of thyroid function has multiple forms and causes. In a paper entitled Pitfalls in the measurement and interpretation of thyroid function tests published in Clinical Endocrinology & Metabolism the authors review conditions in which measuring TSH alone can be be particularly misleading:

When measuring TSH alone may misleadAnd they offer a diagram of different patterns of thyroid function tests and their causes:

Microsoft PowerPoint - ybeem_930_Koulouri et al - FIGURES - FINA


Nature Reviews EndocrinologyFinally, a paper recently published in Nature Reviews Endocrinology articulates an eloquent case for adding T3 to T4 and the need to recognize the patients who may need it:

Impaired psychological well-being, depression or anxiety are observed in 5–10% of hypothyroid patients receiving levothyroxine, despite normal TSH levels. Such complaints might hypothetically be related to increased free T4 and decreased free T3 serum concentrations, which result in the abnormally low free T4:free T3 ratios observed in 30% of patients on levothyroxine.”


“Evidence is mounting that levothyroxine monotherapy cannot assure a euthyroid state in all tissues simultaneously, and that normal serum TSH levels in patients receiving levothyroxine reflect pituitary euthyroidism alone.”

No wonder then that more are resorting to the combination of T4 (levothyroxine) and T3 (liothyronine):

Levothyroxine plus liothyronine combination therapy is gaining in popularity; although the evidence suggests it is generally not superior to levothyroxine monotherapy, in some of the 14 published trials this combination was definitely preferred by patients and associated with improved metabolic profiles. Disappointing results with combination therapy could be related to use of inappropriate levothyroxine and liothyronine doses, resulting in abnormal serum free T4:free T3 ratios. Alternatively, its potential benefit might be confined to patients with specific genetic polymorphisms in thyroid hormone transporters and deiodinases that affect the intracellular levels of T3 available for binding to T3 receptors. Levothyroxine monotherapy remains the standard treatment for hypothyroidism. However, in selected patients, new guidelines suggest that experimental combination therapy might be considered.”


‘Executive Summary’

This post is merely a ‘sampling’ of the vast subject of thyroid hormone regulation and case management. Forthcoming posts will examine other aspects. Here are key points contained in this limited presentation:

  • Thyroid activity is vitally important for all systems throughout the body. Thyroid dysfunction can play a role in common cardiovascular, metabolic, renal and brain disorders.
  • Low T3 syndrome, also known as subclinical hypothyroidism, ‘euthyroid sick syndrome’ and ‘non-thyroidal illness syndrome’ occurs frequently and contributes to morbidity and mortality in numerous ways, adding to the burden of cardiovascular disease, metabolic syndrome (insulin resistance), type 2 diabetes, kidney disease, overweight, depression and dementia.
  • Low T3 is often overlooked due to insufficient testing in clinical practice when TSH and T4 are appear normal.
  • Chronic low grade inflammation is ubiquitous contributing cause to low T3.
  • Disturbances of enzymes that convert T4 to T3, transporters that usher thyroid agents into and out of cells, and peripheral receptor resistance are common and also contribute to Impaired thyroid function.
  • T3 can enhance to response to chemotherapy in the treatment of breast cancer.
  • Treatment of a hypothyroid component in depression can require T3.

Metabolic health status and aging determined by inflammation, not weight

JCEM Vol 98 Number 9Metabolic health is not reliably determined by weight or BMI (body mass index). Lean individuals can suffer from cardiovascular and other diseases involving metabolism, and  evidence has been mounting that supports the notion of a subtype of obesity that is metabolically healthy. A study recently published in JCEM (The Journal of Clinical Endocrinology & Metabolism) shows that inflammation can determine metabolic health in both obese and non-obese populations. The authors state:

Inflammation is a potential mechanism linking obesity and cardiometabolic risk… The aim of the study was to investigate the extent to which differences between metabolically healthy and unhealthy obese and nonobese adults, defined using a range of metabolic health definitions, are correlated with a range of inflammatory markers.”

To do so they measured serum acute-phase reactants, adipocytokines, proinflammatory cytokines, and white blood cell counts in 2047 men and women who they classified as obese (BMI more than 30 kg/m2) and nonobese (BMI less than kg/m2). They established metabolic health status with five definitions that included markers such as blood pressure, triglycerides, LDL, HDL, total cholesterol, fasting glucose, and insulin resistance (HOMA). Several of the inflammatory markers were more strongly associated with metabolic health:

“According to most definitions, metabolically healthy obese and nonobese individuals presented with lower concentrations of complement component 3, C-reactive protein, TNF-α, IL-6, and plasminogen activator inhibitor-1; higher adiponectin levels; and reduced white blood cell count compared to their metabolically unhealthy counterparts. Logistic regression analysis identified greater likelihood of metabolically healthy obesity among individuals with lower levels of complement component 3 (odds ratios [ORs], 2–3.5), IL-6 (ORs, 1.7–2.9), plasminogen activator inhibitor-1 (ORs, 1.7–2.9), and white blood cells (ORs, 2.1–2.5) and higher adiponectin concentrations (ORs, 2.6–4.0).”

In other words, lower C3, CRP, TNF-α, IL-6, PAI-1, and white blood cells, along with higher adiponectin were associated with metabolic health in both groups. Lower C3, IL-6, PAI-1 and higher adiponectin were most strongly indicative of metabolic health among the obese. The authors’ conclusion highlights what clinicians should bear in mind:

Favorable inflammatory status is positively associated with metabolic health in obese and nonobese individuals. These findings are of public health and clinical significance in terms of screening and stratification based on metabolic health phenotype to identify those at greatest cardiometabolic risk for whom appropriate therapeutic or intervention strategies should be developed. “


CMAJ Vol 185 Num 13Furthermore, inflammation is turning out to be a key determinant of the quality of aging. The authors of a paper recently published in CMAJ (Canadian Medical Association Journal) state:

Chronic inflammation has been implicated in the pathogenesis of age-related conditions, such as type 2 diabetes, cardiovascular disease, cognitive impairment and brain atrophy… For example, obesity increases inflammation, and chronic inflammation, in turn, contributes to the development of type 2 diabetes by inducing insulin resistance, and to coronary artery disease by promoting atherogenesis. Thus, raised levels of inflammation appear to be implicated in various pathological processes leading to diseases in older age… We assessed inflammatory markers twice over a 5-year exposure period to examine the association between chronic inflammation and future aging phenotypes in a large population of men and women.”

They examined interleukin-6 (IL-6) levels for 3044 middle-aged adults at baseline and 5 years earlier and correlated it with cause-specific mortality, chronic disease and functioning from hospital and register data and clinical examinations. The authors focused on IL-6 because:

“Of the various markers of systemic inflammation, interleukin-6 is particularly relevant to aging outcomes. There is increasing evidence that interleukin-6 is the pro-inflammatory cytokine that “drives” downstream inflammatory markers, such as C-reactive protein and fibrinogen. Interleukin-6, in contrast to C-reactive protein and fibrinogen, is also likely to play a causal role in aging owing to its direct effects on the brain and skeletal muscles. In addition, results of Mendelian randomization studies of interleukin-6 and studies of antagonists are consistent with a causal role for interleukin-6 in relation to coronary artery disease, again in contrast to C-reactive protein and fibrinogen.”

They created four aging phenotypes at the 10-year follow-up defined as:

  • Successful aging (free of major chronic disease and with optimal physical, mental and cognitive functioning)
  • Incident fatal or nonfatal cardiovascular disease
  • Death from noncardiovascular causes
  • Normal aging (all other participants)

Chronic inflammation as determined by higher IL-6 levels was clearly associated with the poorer aging phenotypes:

“Of the 3044 participants, 721 (23.7%) met the criteria for successful aging at the 10-year follow-up, 321 (10.6%) had cardiovascular disease events, 147 (4.8%) died from noncardiovascular causes, and the remaining 1855 (60.9%) were included in the normal aging phenotype. After adjustment for potential confounders, having a high interleukin-6 level (> 2.0 ng/L) twice over the 5-year exposure period nearly halved the odds of successful aging at the 10-year follow-up (odds ratio [OR] 0.53) and increased the risk of future cardiovascular events (OR 1.64) and noncardiovascular death (OR 2.43).”

IL-6 is not the only useful metric for chronic inflammation in aging, but the authors interpret their data as offering good evidence for its use:

Chronic inflammation, as ascertained by repeat measurements, was associated with a range of unhealthy aging phenotypes and a decreased likelihood of successful aging. Our results suggest that assessing long-term chronic inflammation by repeat measurement of interleukin-6 has the potential to guide clinical practice.

And, not surprisingly, two measurements of IL-6 were better than one:

“Our results on the associations between inflammation, cardiovascular events and death from noncardiovascular causes are concordant with those reported in the literature. However, our results also show that measuring chronic inflammation twice may be a better predictor of future cardiovascular disease and noncardiovascular death than measuring inflammation only once.”

In conclusion:

“We found that chronic inflammation characterized by a high interleukin-6 level (> 2.0 ng/L) measured twice over the 5-year exposure period nearly halved the odds of successful aging after 10 years of follow-up compared with maintaining a low level of interleukin-6 (< 1.0 ng/L twice over the exposure period). Our study showed that high interleukin-6 levels at baseline were inversely associated with most of the individual components that characterize successful aging…”


Experimental GerontologyIn this context it’s important to consider the role of autoimmunity in inflammation that produces poor aging outcomes. A paper just published in Experimental Gerontology shows how an increase in the Th17/Treg ratio, a pro-inflammatory shift that is a hallmark of autoimmune phenomena, is also associated with increased inflammation of aging called ‘inflammaging‘.

Aging is associated with multiple changes in the proliferative and functional abilities of the immune system which are not related to any pathology but consequences in immunosenescence and inflammagingT helper (TH) 17 cells have been implicated in the development of autoimmune and chronic inflammatory diseases in humans. Additionally, a reciprocal relationship between these pro-inflammatory TH17 and the anti-inflammatory regulatory T cells (Tregs) has been described.”

The authors investigated the proportion of pro-inflammatory TH17 cells (CD4 + IL23R +) and anti-inflammatory Tregs (regulatory T cells that modulate the immune response and depend on vitamin D) along with their respective cytokines IL-17 and IL-10 in human healthy donors:

“The data revealed a continual increase of basal CD4 + IL23R + cell amounts in the different age groups. By analyzing the balance of both T-cell subsets it was observed that, on a basal resting level, TH17 cells were significantly increased in older individuals whereas Tregs were reduced.”

Clinical note: This is of great practical significance since almost all the manifold disorders associated with aging, from diminished cognitive function to osteoporosis, have an inflammatory component. The authors conclude:

“…changes of the TH17/Treg ratios in combination with altered cytokine expression during aging may contribute to an imbalance between the pro-inflammatory and the anti-inflammatory immune response. This indicates a higher susceptibility to develop inflammatory diseases with increasing age.”

Vagal nerve activity moderates brain-immune relationships and is measured by heart rate variability

[fvplayer src=’′ width=480 height=270 splash=’’ splashend=show]

 Brain-immune interactions control inflammation and the response to stress. An exciting study with tremendous practical significance was just published in the Journal of Neuroimmunology that shows how vagal nerve activity, which can be measured in the clinic by heart rate variability analysis (HRV), is a key moderator of the brain-immune web and determines the immune and physiological responses to acute stress. Highlights include:

  • Vagal tone indexed by heart rate variability reflects biological regulatory capacity.
  • Vagal tone is linked with flexible immune and physiological stress responses.
  • Frontal-striatal network mediates effects of vagal tone on stress responses.

Journal of NeuroimmunologyThe authors note:

“The bidirectional communication between the immune and nervous systems is considered to involve neural pathways that link these systems and expression of receptors for ligands such as cytokines and neurotransmitters. The brain produces immune-regulatory effects, and immunity has sensory functions (Haddad, 2008). Specifically, descending neural influences on immunity include neural innervation of lymphatic organs (Madden et al., 1995), expression of receptors for neurotransmitters on immune cells (Levite, 2008; Tracey, 2009) and differential left versus right hemisphere influences on immunity (Davidson et al., 1999; Sumner et al., 2011). Ascending immune-to-brain pathways include immune signals entering brain regions that lack a blood-brain barrier (BBB), prostaglandins on both sides of the BBB that mediate inflammatory signals, and an immune-to-brain conversion of inflammatory information by the vagus nerve (Ek et al., 1998; Dantzer et al., 2000; Davidson et al., 2001; Tracey, 2009).”

Fortunately there is increasing interest in understanding the brain-immune web and how the brain modulates the immune system during acute stress. Earlier studies have shown that the brain regions involved in executive functions and stress coping also modulate adaptive immune activities, and are responsible for making the physiological response to stress flexible and appropriate. The authors observe:

“Such associations between the neural and immune systems may depend on and be affected by a third variable, relevant to both systems, specifically tonic activity of the vagus nerve (Thayer and Sternberg, 2010). The vagus nerve expresses receptors for interleukin-1, enabling it to convert immune to nerve information via ascending acetylcholine signals to the brain stem (Ek et al., 1998). In return, the descending vagus modulates the activity of peripheral leukocytes and inflammation via the HPA axis and neural routes that inhibit cytokine production by macrophages (Tracey, 2009). Importantly, brain regions regulating activity of the vagus nerve partly overlap with brain regions involved in immune regulation, including the medial prefrontal cortex (MPFC) and DLPFC (Lane et al., 2009; Ohira et al., 2009). Given the strategic location of the vagus nerve mediating between the periphery and the brain and given its neuroimmunomodulatory roles, we hypothesized that tonic activity of the vagus nerve, indexed by heart rate variability (HRV) in a resting state, moderates transient brain–immune relationships accompanying acute stress.”


“…it was previously reported that individuals with a higher resting HRV showed faster recovery in their acute stress responses of immune, neuroendocrine, and cardiovascular parameters (Weber et al., 2010). These data suggest that higher resting HRV is associated with context-appropriate responses including adaptive recovery after termination of stress, and that the autonomic and endocrine systems mediate the associations between brain and immunity.”

Correlations between regional cerebral blood flow with proportion of natural killer cells and concentration of adrenocorticotropic hormone in high heart rate variability group.

Correlations between regional cerebral blood flow with proportion of natural killer cells and concentration of adrenocorticotropic hormone in high heart rate variability group.

So they set out to investigate whether vagus nerve activity as measured by HRV modulates brain-immune associations including the autonomic nervous system and endocrine (HPA) responses to acute stress. They subjected their study subjects to a learning task that has been proven to psychological and physiological stress and serve as a valid acute stressor for study purposes. The participants underwent PET scans of the brain, had blood sampled after each stress for the ratio of NK cells (natural killer cells) and helper T cells, and amounts of norepinephrine as an index of sympathetic activity and ACTH as an index of endocrine (HPA) activity. Their findings are fascinating:

“There were two main findings of the present study. First, low tonic vagal activity (low resting HRV) was associated with blunted responses in NK cells, norepinephrine, and ACTH to an acute stressor, whereas high tonic vagal activity (high resting HRV) was associated with more sensitive responses in those physiological parameters. Second, low and high tonic vagal activity was related to a qualitatively different neural matrix associated with immune, sympathetic, and endocrine changes. While low HRV participants showed only a correlation between ACTH and activity in the VLPFC, high HRV participants showed stronger associations between their brain activities and NK cells and ACTH. Specifically, in the high HRV participants, NK cell proportions were correlated with activity in the rostral ACC which is a portion of the MPFC and the dorsal striatum (nucleus caudate). The ACTH levels of the high HRV participants correlated with activation in the insula, OFC, cerebellum, and dorsal ACC. To the best of our knowledge, this is the first study to demonstrate that tonic vagal activity moderates brain–immune and brain–neuroendocrine associations accompanying acute stress.”

They discuss some of the important implications of their findings:

“Importantly, we observed that high HRV participants showed…associations between NK cell proportions and activity in [several brain regions]…By contrast, in low HRV participants, NK cell proportions showed no correlation with brain activity. These findings suggest that in individuals with high tonic vagal activity, immune responses to stress are associated with a higher and more complex regulatory neural network that…may enable regulation of NK-cell responses.”


“The observation that individuals with high HRV initially showed a reduced NK cell response to an ongoing stressor during the initial learning task suggests that high HRV reflects the ability to habituate to stress. This is consistent with a previous finding by Weber et al. (2010) indicating that individuals with high HRV recovered cardiovascular, endocrine, and immune responses more rapidly after termination of an acute stressor than individuals with low HRV…By contrast, low HRV individuals demonstrated blunted immune, sympathetic, and endocrine reactivity to the stressor. These data suggest a greater physiological adaptability of in high HRV individuals and a potential moderating role of the vagus nerve in neuroimmuno-endocrine responses to stress.”

It was a similar story for the excitatory neurotransmitter norepinephrine:

Changes of norepinephrine due to stress showed a similar pattern to that in NK cells, with an initial decrease followed by increase after reversal of contingency between options and outcomes in the high HRV group, compared to a more blunted reactivity in the low HRV group.”

And for ACTH (adrenocorticotrophic hormone produced in the pituitary that stimulates adrenal production of cortisol):

Values of ACTH showed a continuous decrease in the high HRV group, reflecting a habituation process, but not in the low HRV group.”

For clinicians reading this who wisely do HRV assessments in their practice:

“…rating of subjective stress at baseline (before measurement of baseline HRV) did not differ between the low and high HRV groups. This suggest that baseline HRV, which was measured before the experimental procedure, might reflect the basic characteristics of an individuals’ vagal tone, rather than individual differences in phasic reactivity of HRV affected by anticipatory anxiety.”

In other words, this implies that heart rate variability assessments really does give us objective data about the patient’s vagal and parasympathetic resources. Other insights that emerge include:

low HRV participants had some impairment in the connections between the brain and peripheral physiology, with consequent differential patterns in physiological responses to the stressor…The high HRV group manifested greater sensitivity in their immune and physiological responses and greater association and possibly regullation by the brain over these responses. Although whether this is an adaptive response is an open question, it is possible that a high tonic vagal activity is a prerequisite for top-down rapid regulation of immune, autonomic, and endocrine responses to acute stress. By contrast, lower vagal activity may result in slower recovery (Weber et al., 2010) or lack of changes of immune responses to environmental challenges, possibly because of impairment in neuro-immune circuits.”

And regarding the premiere factor of inflammation:

An impaired regulation of immune responses can result in inflammation, which is etiologic to various chronic diseases, such as coronary-artery disease, cancer, and dementia, in which the vagus nerve was recently postulated to play a protective role via regulation of multiple basic processes (De Couck et al., 2012).”

Summing up their findings regarding vagal actvity as measured by HRV and the brain-immune response to stress:

“…our study revealed that tonic vagal nerve activity may be an important determinant of neuro- immune and neurophysiological associations and the regulation of the multisystem responses under acute stress.”

Since we can easily measure vagal (parasympathetic) tone in the clinic with HRV and we have sustainable interventions to increase vagal activity (BioCranial Therapy and many others), it’s hard to overemphasize the practical significance of this research.

Readers may also enjoy earlier posts on HRV including Nervous system regulation of inflammation, cytokines, and heart rate variability showing how vagal tone correlates with inflammatory cytokines in the bloodstream.

Aspirin Cardiovascular/Gastrointestinal Risk Calculator

Alimentary Pharmacology & TherapeuticsAspirin has been shown to be worthy of consideration for secondary, and in some cases primary, prevention of heart attacks and strokes but carries known risks for gastrointestinal side effects. If you’re not certain whether to recommend low-dose aspirin to a patient, the aspirin cardiovascular/gastrointestinal risk calculator can help with the clinical decision. A paper recently published in the journal Alimentary Pharmacology and Therapeutics describes the development and use of this practical tool. The investigators state:

Assessment of both GI and CV risks vs. the benefits of low-dose aspirin for individual patients can be difficult in clinical practice.”

Therefore they determined to…

“…develop a tool to estimate CV and GI risks to facilitate the clinical decision-making process…We constructed risk-ratio estimations and determined the incidence of CV events and upper GI complications according to the presence of different risk factors. For upper GI complications we assumed a baseline incidence of 1 case/1000-persons-year, a twofold increased risk with low-dose aspirin, and estimated a 60% GI risk reduction with proton pump inhibitors (PPI) co-therapy and a 60% risk reduction with H. pylori eradication in patients with a history of peptic ulcer.”

The full text of their paper is available at Medscape Family Medicine. A summary of their results states:

“In patients with low CV risk the number of GI complications induced by low-dose aspirin may be greater than the number of CV events prevented. In patients with high CV risk, low-dose aspirin is recommended, but the number of GI complications induced may still overcome the CV events saved. The use of PPI reduces the number of complication events induced by low-dose aspirin, but the number of CV events saved may still be offset by the number of GI complications induced in patients at very high GI risk.”

The authors conclude:

“…the use of algorithms to integrate the stratification of individual CV risk with that of upper GI risk is an important clinical situation to consider in patients with suspected coronary artery disease. A proper quantification of GI risk should identify patients who may benefit more from the avoidance of LDA therapy, or from the addition of appropriate therapeutic modifications to avoid complications and obtain the maximal benefit of LDA. For this reason, the use of the aspirin CV/GI risk calculator should guide physicians in choosing appropriate treatment for primary CV prevention.”

Coronary artery inflammation is reduced by coenzyme Q10

A study just published in the journal Nutrition offers welcome evidence that coenzyme Q10 reduces coronary artery inflammation. The authors state:

“The purpose of this study was to investigate the effects of coenzyme Q10 supplementation on inflammatory markers (high-sensitivity C-reactive protein [hs-CRP], interleukin-6 [IL-6], and homocysteine) in patients with coronary artery disease (CAD).”

In order to investigate the effects of coenzyme Q10 on coronary artery inflammation, they randomly assigned patients with coronary artery disease to a placebo group or one of two coenzyme Q10-supplemented groups (onethe Q10-60 group got 60 mg per day and the Q10-150 group got 150 mg/day) for 12 weeks. Then they measured plasma levels of coenzyme Q10, inflammatory markers (hs-CRP, IL-6, and homocysteine), malondialdehyde (a product of oxidative damage), and superoxide dismutase (antioxidant) activity. The higher dose of CoQ10 produced a significant reduction in the markers for coronary artery inflammation:

“The plasma coenzyme Q10 concentration increased significantly in the Q10-60 and Q10-150 groups. After 12 wk of intervention, the inflammatory marker IL-6 was decreased significantly in the Q10-150 group. Subjects in the Q10-150 group had significantly lower malondialdehyde levels and those in the Q10-60 and Q10-150 groups had greater superoxide dismutase activities. Plasma coenzyme Q10 was inversely correlated with hs-CRP and IL-6 at baseline. After supplementation, plasma coenzyme Q10 was significantly correlated with malondialdehyde and superoxide dismutase activities. However, there was no correlation between coenzyme Q10 and homocysteine.”

It’s interesting to note that it’s not enough to show that plasma levels of CoQ10 go up—it’s the functional result of reduced coronary artery inflammation that counts. IL-6 is an important pro-inflammatory cytokine that participates in coronary artery inflammation, hs-CRP is well-known. Oxidative stress as gauged by malondialdehyde and superoxide dismutase also participate in free radical oxidative reactions associated with vascular and other inflammation. The authors conclude:

Coenzyme Q10 supplementation at a dosage of 150 mg appears to decrease the inflammatory marker IL-6 in patients with CAD.”

When confronting the risk for or presence of vascular inflammation in general and coronary artery inflammation in particular, it is prudent to assess the patient’s coenzyme Q10 status with the appropriate organic acid assay.

GGT is an important predictor of diabetes and cardiovascular risk

I always include GGT (Serum γ-Glutamyltransferase) in our basic screening blood panel, but find often that this is not included in lab work that patients bring from elsewhere. A study recently published in the journal Obesity shows that, besides being associated with fatty liver,  GGT is an important metric for predicting metabolic syndrome, diabetes and hypertension. The authors state:

“Serum γ-glutamyltransferase (GGT) is associated with oxidative stress and hepatic steatosis. The extent to which its value in determining incident cardiometabolic risk (coronary heart disease (CHD), metabolic syndrome (MetS), hypertension and type 2 diabetes) is independent of obesity needs to be further explored in ethnicities.”

They examined a cohort of 1,667 adults from a general population age 52 to 63 with 4 year’s follow-up, measuring GGT activity in association with metabolic syndrome (identified by Adult Treatment Panel-III criteria modified for male abdominal obesity) and multiple markers for cardiovascular disease. Their data bolsters the use of GGT for case management:

“Median GGT activity was 24.9 U/l in men, 17.0 U/l in women…while smoking status was not associated, (male) sex, sex-dependent age, alcohol usage, BMI, fasting triglycerides and C-reactive protein (CRP) were significant independent determinants of circulating GGT. Each 1-s.d. increment in (= 0.53 ln GGT) GGT activity significantly predicted in each sex incident hypertension (hazard ratio (HR) 1.20), and similarly MetS, after adjustment for age, alcohol usage, smoking status, BMI and menopause. Strongest independent association existed with diabetes (HR 1.3) whereas GGT activity tended to marginally predict CHD independent of total bilirubin but not of BMI.”


“Higher serum total bilirubin levels were protective against CHD risk in women.”

While not any stronger a risk predictor for coronary heart disease (CHD) than body mass index (BMI), GTT is a valuable and underutilized marker to use for the case management of cardiometabolic disorders. The authors conclude:

“We conclude that elevated serum GGT confers, additively to BMI, risk of hypertension, MetS, and type 2 diabetes but only mediates adiposity against CHD risk.”